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1. Summary

1.1 Systems Factorial Technology with R

A portion of the effort to date has been dedicated to the development of an open source implementation of systems
factorial technology (SFT) measures and models within the R for statistical computing framework and language. SFT is
one methodology utilized in this research for making inferences about human information processing mechanisms
utilizing response time data. The first version of the package (sft 0.1) was released in 2012; we published a tutorial paper
on utilizing SFT, its associated experimental methodology, the double factorial paradigm, and the basic functionality in
the sft package (Houpt, J.W., Blaha, L.M., Mclntire, J.P., Havig, P.R., & Townsend, J. T., 2013, Systems factorial
technology with R. Behavior Research Methods [online publication doi 10.3758/s13428-013-0377-3). Additional research
efforts have both contributed new theory to the SFT framework, but have continued to increase the functionality of the sft
toolbox to include new measures. The second major release of the sft package (version 1.0-1) was made in November
2012, accompanied by a presentation of the new functions at the 2013 Society for Computers in Psychology Meeting. The
latest update, 2.0-7 was released in October 2014. A companion tutorial paper on the new functions is currently under
revision.

(Houpt, J. W., Blaha, L. M., & Burns, D. M. (under revision). Latest developments in systems factorial technology with
R)

1.2 Models of Opinion Dynamics

Dimer automata models provide a framework for modeling information dynamics of complex systems represented as
networks. Several simulation studies were run exploring the ability of two- and three-state dimer automata systems to
capture opinion dynamics (also termed innovation diffusion) and influence maximization in different networks.
Simulation experiments examined different networks structures, the influence of zealotry on the dynamics, and strategies
for the placement of zealots in the network for maximum influence on the final opinion states. Initial experiments were
presented at the 2013 Behavior Representation in Modeling and Simulation conference, and additional experiments were
included in an article published in 2015.

(Arendt, D. A. & Blaha, L. M., (2015) Opinions, influence and zealotry: A computational study on stubbornness.
Computational & Mathematical Organization Theory, 21(2), 184-209 [invited paper]).

1.3 Generalized n-Channel Capacity Space

Theoretical progress was made in the area of parallel models of response time by the formulation of generalized bounds
on the capacity coefficient values predicted by standard parallel processes with n>2 channels in the system. Previously,
general n-channel bounds (upper and lower) on the range of cumulative distribution functions for standard parallel models
had been defined for minimum time, single-target self-terminating maximum time stopping rules. Relatedly, capacity
coefficient ratios had been defined for the same three stopping rules. Because the capacity coefficients are formulated by
logarithmic transformations of the cumulative distribution functions, we can redefine the bounds to provide upper and
lower limits on the capacity coefficient functions directly. These capacity space bounds were derived and proven in an
article published in 2015.

(Blaha, L. M. & Houpt, J. W. (2015). An extension of workload capacity space for systems with more than two channels.
Journal of Mathematical Psychology, 66, 1-5.)
1.4 The Points to Pixels Pipeline (P2P?)

In order for patterns to be found in and for meaningful information to be extracted from high dimensional or complex
network data, easy to use and manipulate visualization tools are needed for data exploration. We developed an open

1
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source framework for performing simplex clustering and visualizing data for visual analytics purposes. Data can be fed
into the pipeline framework as either the raw multivariate measures, a (dis)similarity matrix computed from that data, or
as a graph of network-type data. From any of those formats, the appropriate transformations of the data are made and then
a simplex is derived. The parameters governing the computations are easily manipulated by the user. And a set of easy
visualizations are created by fitting a convex hull to each clique or cluster in the data and projecting that into lower
dimensional space, augmented by color coding. By utilizing a set of free, open source (Python based) toolboxes, the P2P>
framework is easily utilized by any researchers without need for specialized software or expensive licensing.

(Arendt, D. L., Jefferson, B., & Su, S. (in preparation) The Points to Pixels Pipeline (P2P?): and open source framework
for multivariate, similarity, and network data visualization.)

1.5 SIMCog-JS: Simplified Interfacing for Modeling Cognition — JavaScript

Computational cognitive architectures have been limited in their application scope to post-experimental analysis or near
real-time simulation separate from human operators. We propose that cognitive models could be used as real-time
monitoring tools if they could execute a task simultaneously with the human operators. To enable this, we developed a
client-server software architecture, Simplified Interfacing for Modeling Cognition — JavaScript (SIMCog-JS). This was
implemented in JavaScript and employs websockets to enable communication between the Java ACT-R cognitive
architecture and a JavaScript user interface. This software is available open source at http://sai.mindmodeling.org/simcog.
A conference proceedings paper was published in 2015 at the International Conference on Cognitive Modeling.

(Halverson, T., Reynolds, B., & Blaha, L. (2015). SIMCog-JS: Simplified Interfacing for Modeling Cognition -
JavaScript. Proceedings of the International Conference on Cognitive Modeling, Groningen, The Netherlands, April 9-11,
39-44.)

1.6 Modeling the Workload of Capacity of Visual Multitasking

We are extending the application of the capacity coefficient to multiple, simultaneously executed visual decision making
tasks, which we refer to as visual multitasking. The initial testbed for this extension is an open-source JavaScript
implementation of the modified Multi-Attribute Task Battery (nMATB; available online at
http://sai.mindmodeling.org/mmatb). We presented initial results showing that two tasks can boost processing capacity,
but moving to four tasks results in limited capacity processing on all tasks. Preliminary findings were published in the
2015 International Conference on Cognitive Modeling proceedings.

(Blaha, L. M., Cline, J., & Halverson, T. (2015). Modeling the workload capacity of visual multitasking. Proceedings of
the International Conference on Cognitive Modeling, Groningen, The Netherlands, April 9-11, 37-38.)

1.7 ACT-R and LBA Model Mimicry Reveals Similarity Across Levels of Analysis

Computational and mathematical cognitive models have trade-offs in their implementations of explicit cognitive
mechanisms and their mathematical tractability. This effort compared a mathematical sequential sampling model, the
Linear Ballistic Accumulator (LBA), and a computational cognitive model programmed in the cognitive architecture
Adaptive Control of Thought - Rational (ACT-R) of a simple detection task, the psychomotor vigilance task. We found
that both provided good-fitting explanations of empirical data. Relationships were found between parameters. This
enables future modeling to leverage the mathematical tractability of the LBA for fitting data and relationships between
parameters to leverage the mechanistic explanations afforded by the computational cognitive architecture for
understanding task behaviors in human observers. Areas for further theoretical development were identified. This work
was published in a conference proceeding paper in 2015.

(Fisher, C. R., Walsh, M., Blaha, L. M., & Gunzelmann, G. (2015, July). ACT-R and LBA model mimicry reveals
similarity across levels of analysis. 37th Annual Conference of the Cognitive Science Society, Pasadena, California.)

Distribution A: Approved for public release. 88ABW Cleared 04/01/2016; 88ABW-2016-1588.


http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/BlahaClineHalverson_ModelingWorkload.pdf
http://sai.mindmodeling.org/downloads/BlahaClineHalverson_ModelingWorkload.pdf
http://sai.mindmodeling.org/downloads/FisherWalshBlahaGunzelmannCogSci2015.pdf
http://sai.mindmodeling.org/downloads/FisherWalshBlahaGunzelmannCogSci2015.pdf

1.8 Exploring Individual Differences via Clustering on Capacity Coefficients

Capacity coefficient analyses are performed at the individual participant level of data. In order to make inferences about
groups or patterns within groups of participants, researchers have had to rely on visual inspection and qualitative
descriptions. We present an approach for using functional principle components analysis to map all participants into a
common vector space for machine learning analysis. We demonstrate how clustering can identify subgroups within the
data that might relate to experimental manipulations or to participant population characteristics (age, diagnosis, etc.). This
provides a set of tools for quantitative descriptions of individual differences in capacity coefficient data. Aspects of this
technique were published in a 2015 conference proceedings paper; the full technique will appear in a book chapter in
2016.

(Houpt, J. W. & Blaha, L. M. (2015, July). Exploring individual differences via clustering on capacity coefficients. 37th
Annual Conference of the Cognitive Science Society, Pasadena, California.)

(Blaha, L. M. & Houpt, J. W. (2016, anticipated). Combining the capacity coefficient with statistical learning to explore

individual differences. In Mathematical Models of Perception and cognition: A Festschrift in honor of James T.
Townsend (J. W. Houpt & L. M. Blaha, Eds.). Psychology Press.)

2. Manuscripts from the Current Effort

Included in the following pages are drafts of manuscripts based on the efforts described above. Each of these are
embedded images from a pdf document that was typeset in LaTeX. For documents 1.5-1.8, clicking on the pdf embedded
in this document will open the pdf.
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LATEST SFT WITH R 3

Abstract

Systems factorial technology (SFT) is a powerful and mathematically rigorous framework
for studying how cognitive systems make use of multiple sources of information. Articles
about SF'T" tend to focus on the mathematics and development of the theory, making them
inaccessible to many researchers. The sft package for R was recently introduced to
facilitate the use of SFT by a wider range of researchers. The original package contained
tools implementing only the basic theoretical tools. In the last few years, there have been a
number of advances to SE'T, which we will review, and we introduce their implementation
in the sft package. In particular, we will demonstrate R functions for functional principal
components analysis of the capacity coefficient (Burns, Houpt, Townsend, & Endres, 2013),
caleulating and plotting assessment functions (Townsend & Altieri, 2012), and calculating
and plotting distributional bounds in a unified capacity space (Townsend & Eidels, 2011).
Additionally, we expanded the package to include a function for the new capacity
coefficient for single-target self-terminating (ST-ST) processing (Blaha, 2010), as well as
functions supporting the plotting of cumulative distribution function bounds on the
predictions of standard parallel processing models for minimum time, maximum time, and

ST-ST decision rules.
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LATEST SFT WITH R 4

Latest Developments in Systems Factorial Technology with R

Introduction

Systems Factorial Technology (SFT) is a framework for analyzing how multiple
sources of information are used together in cognitive processing. Although the tools are
quite powerful and broadly applicable, they can be inaccessible, or at least daunting, to
psychology researchers. Houpt, Blaha, Melntire, Havig, and Townsend {2013) introduced
an R (R Development Core Team, 2011) package to implement the basic measures and
statistical analyses. However, SFT continues to advance and more tools continue to
become available. In this article we give an overview of the new theoretical advancements
in the SFT framework and describe their use and implementation in the sft R package. In
particular we focus on four advances from the last few years: the single-target
self-terminating (ST-ST') capacity coefficient (Blaha, 2010; Blaha & Townsend, under
review), the unified workload capacity space measures (Townsend & Eidels, 2011),
functional principal components analysis (fPCA} of the capacity coeflicient {Burns et al.,

2013), and the workload assessment functions (Townsend & Altieri, 2012).

We will begin with an overview of workload capacity in SFT to give readers who may
be less familiar with the topic a foundation for the rest of the paper. This overview is brief
and meant only to give readers the basic details needed to use these new analyses. We
encourage readers wanting further details to read the SF'T' with R paper (Houpt et al.,
2013) or some of the original papers on workload capacity in SF'T and on the capacity
coefficient (Townsend, 1974; Townsend & Ashby, 1983; Townsend & Nozawa, 1995;
Townsend & Wenger, 2004; Wenger & Townsend, 2000).

First, a brief note on our notation. When we refer to the R package for the
implementation of SFT theory, we will use sft. Any R code itself, like function names or

input argnments, will be typeset as follows: function or input.argument—=value.

Distribution A: Approved for public release. 88ABW Cleared 04/01/2016; 88ABW-2016-1588.



LATEST SFT WITH R 5

Workload Capacity and the Capacity Coefficient

Within SFT, workload capacity refers to a change in information processing
performance as the number of information sources change. The original definitions focused
on processing speed as measured by response times. Some of the recent generalizations
discussed in this paper and implemented in the latest version of the R package include
response accuracy as well. In this section we will focus on the response time only approach,
then discuss the generalization in the Assessment Function section.

In most cases, a system takes longer to finish the more it has to do, However, just
because a system takes longer to respond when it is required to process more sources of
information, it does not mean that any of the individual information sources are processing
al a slower speed. Likewise, when there is redundant information available, the overall
processing speed being faster does not mean that the processing of any individual source is
faster. For example, in parallel processes with redundant information, faster processing
times may be due to statistical facilitation (Raab, 1062; Miller, 1982). Statistical
facilitation refers to the fact that the minimum over a set of more than one random
variable (i.e., source processing times) tends to be smaller than any of the individual
random variables. Statistical inhibition refers to the analogous phenomenon when all
processes must finish: the maximum of multiple random variables tends to be larger than
any of the individual random variables. Thus, if all we can measure is a person’s response
time with one or more sources of information present, and not the individual processing
times of each source of information when multiple sources are available, it is important to
compare the times against an appropriate baseline.

The baseline for the capacity coefficient in redundant target tasks is the
unlimited-capacity, independent, parallel, first-terminating model {Townsend & Nozawa,
1995). We use the initialism UCIP for the first three assumptions and OR to refer to
first~-terminating (in reference to a logical OR decision rule). Because it is first-terminating,

the model is finished as soon as any of the individual target processes have completed.,
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LATEST SFT WITH R 6

Equivalently, the model has not yet finished only if none of the individual target processes
have finished,

Pr{Tucip-or >t} = Pr{Ty > ¢t,..., T, > {}.

We can use T; to refer to the processing time for the ith target regardless of whether there
are other sources present due to the unlimited capacity assumption. Using the

independence assumption, we can split the right side into a product,
Pr{T} >1t,...,T, >t} = Pr{T} >t} x --- x Pe{T,, > t}.

We can rewrite this equality more succinctly using survivor functions,

S(t) = 1— F(t) = Pe{T > t},
Suctp-or(t) = S1(t) %+ x Su(t)

where F(t) = Pr{T < t} is the cumulative distribution function. Lower survivor functions
correspond to faster processing times. To translate this identity to cumulative hazard
functions we use H(t) = — log S(t), so we see that larger cumulative hazard functions
correspond to faster processing times.

The cumulative of the hazard function is convenient for statistical purposes and has
the nice interpretation as the amount of work completed by the cognitive processing system
in ¢ amount of time. We take the natural logarithm of both sides of the previous equation
to arrive at the baseline prediction of the UCIP-OR model in terms of eumulative hazard
functions,

Hyucip-or(t) = Hi(t) + -+ H,(1).

The capacity coefficient is a ratio function comparing this UCIP model baseline to
observed performance. Let € = {1,...,n} denote the set of n active channels in an
experiment. Using this set notation, we denote the empirical response time cumulative
distribution function (CDF) on an OR task as Fe(t) = P [ming(T,) < ], for all real t = 0

and ¢ € €. The corresponding empirical cumulative hazard function is denoted He(t). The

Distribution A: Approved for public release. 88ABW Cleared 04/01/2016; 88ABW-2016-1588.



LATEST SFT WITH R 7

capacity coefficient for tasks in which a first-terminating decision rule is expected is given
by the ratio of cumulative hazard functions of response times when all n targets are present
to the sum of cumulative hazard functions of response times for cases when each of the n

targets is present in isolation,

He(t) He(t)

COR(é) B HGO]}—J DR(‘I) - H1 (f,] e + Hu("’}

(1)

The baseline of UCIP-OR processing is estimated in the denominator, so if the performance
measured when all targets sources are present is better than the estimated baseline, then
Jor(t) = 1. Likewise, worse than baseline performance would be indicated by Cogr(t) < 1.
The same logic can be used to derive the baseline for tasks in which the participant
can only respond when all sources of information have been processed, i.e. exhaustive or
AND tasks. For the UCIP-AND model to finish, it must finish processing all sources of

information,

Pr{Tucip—anp <t} =Pr{T1 <t,..., T, < t}

Fycip-anp(t) = Fi(t) < -+ x Fu(t).
In terms of the cumulative reverse hazard funetion, K (1) = log F(t),

Kucip-anp(t) = K (t) + - -+ K, ().

Lower CDFs correspond to slower processing, so lower cumulative reverse hazard functions
correspond to worse performance. Because Ft) is between 0 and 1, the logarithm of F(t)
is always negative, so lower values correspond to larger magnitudes. Hence, to keep the
interpretation of C(t) > 1 corresponding to better than baseline, the AND capacity
coefficient is flipped,

_Ka() 4+ Kal®)

Canp(t) - 0] : (2)

Note that for the observed performance in an AND task, we use the response time CDF

Fo(t) = Pmaxe(T,) < t], for all real t > 0 and ¢ € €, and we denote the cumulative

10
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LATEST SFT WITH R 8

reverse hazard function K¢ (t). The baseline is now represented in the numerator, so larger
magnitude eumulative reverse hazard functions for response times to all sources of
information (the denominator) indicates worse than baseline performance and leads to

Canp(t) < 1. Likewise, better performance than the baseline leads to Canp(f) > 1.

Experimentally, workload capacity analysis can be used on any tasks that require an
AND or OR type of decision (and now single-target self-terminating, as we will explain
below) and that utilize a manipulation that involves judgments on different numbers of
information sources. There are two specific workload manipulations needed to utilize
quations 1 and 2. The first is a set of single information source trials that allow the
estimation of the individual channel response time distributions. This is required for the
UCIP baseline model estimates. The second necessary condition is one in which all the
sources of information are presented together, to estimate the actual cognitive processing of
n active channels. For more on the experimental manipulations for capacity analysis,

particularly in the context of the double factorial paradigm, see Houpt et al. {2013).

To make this concrete, imagine a visual or memory search task. In order to estimate
the UCIP baseline model, participants must complete a series of single-target trials (i.e.
one item in the search array) with one type of trial for each individual different source of
information. Parlicipants must also complele trials for n items in the search array. If this
array was all targets, then participants would be completing an OR redundant-targets
task, and the experimenter would use Equation 1 for his analysis. If this array was all
distractors, and all must be searched to determine the target was not present, then
participants would be completing an AND task, and the experiment would use Equation 2

for the analysis for those response times.

Functions for calculating the traditional capacity coefficients and the associated test
statistics from (Houpt & Townsend, 2012) are available in the sft package and described in
Houpt et al. (2013). With the basics of workload capacily analysis in SFT established, we

can now summarize the latest developments and their corresponding functions in the sft

11
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LATEST SFT WITH R 9
package.

Single-Target Self-Terminating Capacity

Single-target self-terminating (ST-ST) processing refers to a response rule that sits
between OR and AND processing. This is the condition where there is a single target of
interest for the response. When this target is presented among other non-target
information sources in a task, it may be the first or last item processed or somewhere in
between. However, as soon as the target is identified, the observer can make a response
{hence, the nomenclature ‘self-terminating’). For example, ST-ST processing is often the
stopping rule demanded in a visual or memory search task when a single target of interest
is embedded in a search array of distractors.

As with AND processing, the ST-ST capacity coefficient compares performance on a
task to a UCIP model using cumulative reverse hazard functions (Blaha, 2010; Blaha &
Townsend, under review). The UCIP model prediction is the cumulative reverse hazard
function for response times to the single target processed in isolation. Let Ki(f) denote the
response time cumulative reverse hazard function for single-target k processed alone.
Because the assumptions of the UCIP model are that the individual channel processing
rates are independent of other channels and do not change as the total number of channels

changes, then

Kycip-stst = Ki(t).

The cumulative reverse hazard function for processing of the same single target k
among n total information sources (n — 1 distractors) is denoted Ky o(t), where again
C ={1,...,n}. The latter case is the higher workload condition of interest for workload
capacity analysis. Taking a ratio of the UCIP model to the n-source processing
performance gives the ST-3T capacity coeflicient:

(u(t)

Cyrsr(t) = B’

12
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LATEST SFT WITH R 10

Similar to Canp(t), the numerator is the haseline model, and a larger denominator
indicates worse than baseline performance, giving Capsr(t) < 1, which is referred to as
limited capacity processing. This indicates that either there are limited processing
resources available, there is inhibition among the subprocesses, or the items are not

processed in parallel {e.g., the items may be processed serially).

Likewise, better than baseline performance again leads to Cyrgp(t) = 1, which is
referred to as super capacity processing. This indicates that either there are more
processing resources available per process when there are more processes, that there is
facilitation among the subprocesses, or the items are not processed in parallel (e.g., the

items may be processed coactively).

Additionally, Blaha and Townsend {under review) showed that a statistical test for
Csrsr(t) is a special case of the statistical test for AND capacity developed by Houpt and
Townsend (2012). The estimator of the cumulative reverse hazard function is calenlated
with the estimateNAK function in the sft package, as covered in Houpt et al. (2013).

In the sft R package, the ST-ST capacity coeflicient and corresponding statistical
test {Blaha & Townsend, under review) are calculated by the capacity.stst function. It
takes as its input a list containing two arrays of response time data. The first array in the
list is assumed to be the response times from the single-target self-terminating condition
with a total of n information sources, and the second array in the list is assumed to be the
response times from the single target processed in isolation (the baseline estimate). The
second input argument is an optional list of arrays of correct indicators; if the correct
indicators are not provided (CR=NULL), the function assumes that all response times are

from correct, responses.

Finally, the capacity.stst function includes an indicator input ratio. If
ratio=TRUE, then the ratio form of the capacity coeflicient (Equation 3) is returned;
examples of ratio Cypgr(f) functions, simulated for super capacity, unlimited capacity, and

limited capacity models, are shown in Figure 1. If ratio=FALSE, then the difference form
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LATEST SFT WITH R 11

of the capacity coefficient is returned. The difference form of the ST-S'T" capacity coefficient
is given by

Carsr(t) = K&,CU) — Ki(1). (4)

For the difference form of Cgrgr(t), the reference value for unlimited capacity processing is
0 instead of 1. Negative values indicate worse than UCIP performance, and positive values
indicate better than UCIP performance.

We can start with an simulated example data set to demonstrate the capacity.stst
function. Recall that we need two sets of response times, the single target in isolation and
the single target among other non-target processes. In this example, we simulate data from
a, limited-capacity condition, wherein the additional information sources slowed the

processing rate of our target channel,

ratel <- .35
RT.pa <- rexp(100, ratel}
RT.pp.limited <- rexp(100, .5%ratel)

tvec <- sort{unique(c(RT.pa, RT.pp.limited)))

To evaluate Cyrgr(t) and test the null hypothesis of UCIP-STST processing, we can

use the function with a list of response time vectors.
cap <- capacity.stst(RT=1ist(RT.pp.limited, RT.pa)}
We use print (cap$Ctest) to see the results of the statistical test.

Houpt-Townsend UCIP test

data: RT and CR

z = -3.4161, p-value = 0.0006353

alternative hypothesis: response times are different than those

predicted by the UCIP-AND model

The z-score is significantly negative, so we would reject the null hypothesis of

UCIP-STST processing. Note that in this example, we used the default function calls of
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LATEST SFT WITH R 12

CR=NULL (i.e., we assume all response times are from correct trials} and ratio=TRUE
(return the ratio version of the function). Also, note that the information about the
alternative hypothesis returned with the print command refers to the UCIP-AND model,
because the statistical test is a special case of the AND test with only a single channel in
the UCIP model {c.f. Blaha and Townsend (under review)). The data from this simulated
example are plotted as the solid red line in Figure 1.

The capacity.stst function returns an approxfun object representing the ST-ST
capacity ratio function (ratio=TRUE, which is the default) or the ST-ST capacity
difference function (ratio=FALSE), as well as the ucip.test for ST-S8T processing. If
ratio=FALSE, capacity.stst also returns the variance estimate for the difference variant
for the capacity coeflicient. If the reported p-value for the statistical test is less than the

user’s predetermined type [ error a level, at least one of the UCIP assumptions has failed.

Unified Workload Capacity Space

Townsend and Eidels (2011) introduced unified capacity spaces, a set of inequalities
that enable both capacity coefficients and the parallel processing response time distribution
bounds to be plotted on the same coordinate system for direct visual comparison. In order
to do this, the bounds for standard parallel processing were transformed from standard
CDF values existing on the range [0,1] to inequalities of either cumulative hazard functions
or cumulative reverse hazard functions, depending on the stopping rule, for direct
comparison with the capacity coefficient values. Note that in this case, the capacity
coefficient assumes the ratio format which exists on the range [0, +oc|. Townsend and
Eidels (2011) derived the unified capacity space inequalities for AND and OR processing of
2-channel systems. (Blaha & Houpt, Under Review) extended this theory to general
n-channel models and derived the unified space inequalities for ST-ST processing.

In the sft package, we have developed a single function, estimate.bounds, that can

estimate both the traditional CDF versions of the bounds on parallel processing for all
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stopping rules and the unified workload capacity space inequalities. First we review both

versions of the inequalities, and then we explain the estimate.bounds function.

Bounds on Standard Parallel Processing

OR. Let Fr(t) = P[ming(7,) < ¢], for all real £ > 0 and ¢ € C, denote the
cumulative distribution of response times under a minimum time (logical OR) stopping
rule. The general bounds for n-channel parallel processing under an OR stopping rule are

(Colonius & Vorberg, 1994):
max | Foygay (t)] < Folt) < min [Fov (6) + Fova(®) = Foyap (0] (5)

Here, we have used the set notation C'\ {7} to indicate reponse times with all sources
present except 4 (i.e. n — 1 total processing channels). Under the assumption or conditions
that the individual channels are identically distributed (11D}, this inequality chain
simplifies to

Foy(t) < Folt) < [2 # Foyny (2) -Ff_'.-‘\{l.ﬁ‘r(t}] . (6)

When the model under serutiny has only n = 2 channels, the inequality chain takes the
form:

min [y (1), Fo(8)] < Fryg(t) < [F(t) + Fao(1)]. (7)

The upper bound on this final inequality is often referred to as the ‘race-model inequality,’
which has long been used to test for evidence of coactive processing architecture (Miller,
1982).

AND. Let Gelt) = P[mazc(1,) < f], where again C = {1,...,n} is the set of all n
channels and ¢ € C, denote the cumulative distribution of response times under a
maximum time (logical AND, exhaustive) stopping rule. The general bounds for n-channel

parallel processing under an AND stopping rule are (Colonins & Vorberg, 1994):

max [Govi(t) + Goriiy () — Goripy (8)] < Gelt) < min [Geyiy ()] (8)
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Under the assumption or conditions that the individual channels are identically

distributed, this inequality chain simplifies to
[2 * Gy (f) — GC\{I.E‘;-(L}] < Ge(t) < Goyyt)- (9

When the model under scrutiny has only n = 2 channels, the inequality chain takes the

form:

ST-ST. Let Fpe(t) = P[Tp¢ < t] denote the CDF of response times under the
ST-ST stopping rule, where the target of interest is on processing channel £ among n
active channels. The general bounds for n-channel parallel processing under an 8T-5T

stopping rule are (Blaha & Townsend, under review):
[[ Fo®) < Fro(t) <3 Ful®). (11)
e=1 e=1

Under the assumption or conditions that the individual channels are identically

distributed, this inequality chain simplifies, for any channel ¢ € O, to
[Fa()]" < Frelt) < ns F{1). (12)

When the model under serutiny has only n = 2 channels, the inequality chain takes the

form:
(F1(t) » Fo(8)] < Fraa(t) < [Fi(8) + Fa(t)]. (13)

Note that in this case, £ = 1 or £ = 2, but this may not be specifiable a prior? depending
on experimental design.

Across all stopping rule conditions, violation of the upper bound indicates
performance that is faster than can be predicted by an unlimited capacity parallel model.
This may arise from positive (facilitatory) crosstalk between parallel channels, super
capacity parallel processing, or some form of co-active architecture in the measured human

response time data. Violation of the lower bound indicates performance that is slower than
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predicted by an unlimited capacity parallel model. This may arise from negative
(inhibitory) crosstalk between parallel channels, fixed or limited capacity processing, or

some form of serial architecture in the measured human response time data.

Bounds on Capacity Coefficient Space

The bounds on parallel processing defined above can be transformed from CDFs into
cumulative hazard and cumulative reverse hazard functions to form inequality chains with
the capacity coeflicients. The bounds for all stopping rules and all models are summarized
in Table 1. For the derivation of these bounds, the reader is referred to Townsend and
Eidels {2011) and Blaha and Houpt (Under Review),

The estimate.bounds function in the sft package can be flexibly used to compute
either the CDF or unified capacity space bonnds on standard parallel processing. For its
first input argument, RT, it takes a list of numeric arrays of response times, each measured
from the individual channels to be modeled. The RT list can contain either one array for
each of the n channels to be estimated (so length(RT)=n), or it can have length(RT)=1
and the bounds can be found under an assumption that the n channels are identically
distributed. In the former case, the number of channels, n, is estimated from the length of
the RT list, and so the user can keep the defanlt input arguments assume . ID=FALSE and
numchannels=NULL. In the latter case, because the length of the RT list is only 1, the input
arguments assume . ID=TRUE and numchannels=n (where n > 2) must be specified by the
user.

The optional input argument CR is a list of correct indicators that should have the
same length as the input argument RT. [f CR=NULL (default), then all the response times
are assumed to be from correct response trials.

Critically, the user must specify which stopping rule (OR, AND, ST-ST) should be
computed using the argument stopping.rule=("or", "and", "stst"). Finally, the

input argument unified.space indicates whether the bounds should be computed for
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CDF space (unified.space=FALSE) or for the unified capacity coefficient space
(unified.space=TRUE).

Here, we demonstrate the use of the estimate.bounds function with data from the
dots dataset, which is included with the sft package. First, we load the data and extract
the necessary data to estimate the bounds for Participant S3 for the OR stopping rule

condition.

data(dots)

attach(dots)

sub <- ‘53’

cond <- ‘0OR’

chanl <- RT[Subject==sub & Condition==cond & Correct & Channell>0 & Chamnel2==0]
chan2 <- RT[Subject==sub & Condition==cond & Correct & Channell==0 & Channel2>0]
redundant <- RT[Subject==sub & Condition==cond & Correct & Channell>0 & Channel2>0]

rts <= list(redundant,chanl, chan2)
Next, we calculate the bounds using the estimate.bounds function.

cdf .bounds <- estimate.bounds(rts[2:3], corrects[2:3], stopping.rule=‘or’}
capacity.bounds <- estimate.bounds(rts[2:3], corrects[2:3],

stopping.rule=‘or’, unified.space=TRUE)

We then calculate the redundant targets edf to compare to bounds.
redundant.cdf <- ecdf(rts[[1]] [corrects[[1]]>0])

And, we calculate the capacity coefficient.
or.cap <- capacity.or(rts, corrects)

Sample plots of parallel processing bounds computed with estimate . bounds are
shown in Figure 2. This figure shows both the AND and OR bounds, plotted in both CDF
and unified capacity space, for a single participant from the dots data set. In the CDF

space plots, the empirical CDI of the redundant target trials response time data for either
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the AND and OR conditions is shown in the thick, solid black lines. The upper and lower
bounds on those CDFs are plotted in the dashed and dotted (respectively) red lines. Note
that in these traditional views, we would try Lo make inferences about capacity from the
violations of the bounds.! For example, in the data shown in Figure 2 (lower half, OR
task), there is a clear violation of the lower bound, roughly between 0 and 250 ms. Using
the traditional CDF space plots, we would infer that Participant S3 is too slow to be
performing like a race model with redundant targets. Now, using the unified capacity space
plots, we can make more direct inferences about the relationships of the bounds and
capacity coefficient. In the lower right plot of Iigure 2, limited capacity Cor(t) < 1 is
observed for the whole range of response times, with violations of the lower bound obvious

for the early response times.

fPCA for Capacity Coelflicients

Functional principal components analysis (fPCA) is an extension of standard
principal components analysis to inlinite dimensional (function) spaces {(c.f. Ramsay &
Silverman, 2005). Just as in standard principal components analysis, fPCA is a method for
finding a basis set of lower dimensionality than the original space to represent the data.,
However, in place of basis vectors, [PCA has basis functions. Each function in the original
dataset can then be represented by a linear combination of those bases, so that each datum
is represented by a vector of coefficients {or scores) in that linear combination.

The capacity coefficient is a function across time, so the differences among capacity
coefficients from different participants and for conditions can rarely be characterized by
simple greater than or less than relations. The nuances of variation in functions would be
lost if one were to reduce the capacity estimabes to a point by taking an average across
time or the maximum/minimum of the function. By using fPCA we can maximize the

1For a full discussion of the inequality chains formed by the AND and OR processing bounds, as well
as the inferences ahout capacity that are possible from these inequality chains, the reader is referred to

Townsend and Wenger (2004).
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amount of variation we capture with a point estimate or small number of values: The
factor scores can be used to examine differences among capacity coefficients, taking into
account variation across the entire function.

The R function for fPCA implements the steps outlined in Burns et al. (2013}. First,
the data are shifted by subtracting the median response time within each condition for
each participant, using the same shift for both single target and multiple target trials, so
that the capacity curves will be registered. Second, each capacity coefficient is caleulated
with the shifted response times. Next, the mean capacity coefficient across participants and
conditions is subtracted from each capacity coefficient, and the resulting capacity
coefficients are represented using a b-spline basis. The [PCA procedure extracts the first
basis function from the bspline space that accounts for the largest variation across the
capacity coeflicients. The next basis function is chosen as that which explains the largest
amount of remaining variation in the capacity coeflicients, given the constraint that it must
be orthogonal to the first. This process continues until the indicated number of bases have
been extracted.? Once the capacity functions are represented in the reduced space, a
varimax rotation is applied to concentrate variability and increase interpretability.

The fPCAcapacity function can be called from the sft package using the following

syntax:

fPCAcapacity(sftData, dimensions, acc.cuteff = .75, OR = TRUE, ratioc = TRUE,

plotPCs = FALSE)

The data for fPCA analysis should be in the standard SFT data form, which is described
thoroughly in Houpt et al. (2013): there should be a column for a participant identifier

(sftData$Subj ect), a column for the condition (SftData$Condition), a column for the
salience manipulation value of each source of information (sftData$Channeli), a column
for response times {sftData$RT), and finally a column indicating whether the participant

was correct on each trial (sftData$Correct). The fCPAcapacity function also has a

2The maximum possible number of basis functions i the number of input, functions.
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ratio flag to indicate whether to output capacity ratios (if ratio=TRUE) or differences, an
OR flag indicating the version of the capacity coefficient (Equation 1 if OR=TRUE;

Equation 2 if DR=FALSE)? and an acc.cutoff input value to establish a minimum
criterion for accuracy required for including data in the analysis. Two variables unique to
the fPCA analysis are the dimensions value, which can be set by the experimenter to
establish the number of basis functions used to represent the data, and the plotPCa
indicator which will generate plots of the principal components if plotPCs=TRUE.

The output of the function is a list of length four. The first list entry is a data frame
titled Scores, which contains the loading values (coefficients on the basis functions) for
each participant and condition. MeanCT is the averaged capacity function across all
participants and conditions, while PF is a list containing each of the principal functions, the
number of which will have been specified by the dimensions argument in the call to the
function. The last list entry is medianRT, which will keep track of the amount each capacity
curve has been shifted during the registration step, measured in milliseconds of RT.

Figure 3 illustrates the output plots gererated by the IPCAcapacity function when

run on the dots data using the function call:

fPCAcapacity(dots, 2, acc.cutoff = .75, OR = TRUE, ratio = TRUE,

plotPCs = TRUE).

Note that in the dots data, there are two conditions, OR and AND, referring to two task
instructions given in the experiment; in the present analysis, we use Equation 1 in the
fPCA analysis for all the data. In the above call, we asked for two dimensions, but again
that choice is up to the experimenter. We can see that for the dots data, the first two
components can together account for 93% of the variance (summing the values noted on
the y-axis labels). The first component function mainly inflates (or deflates, depending on
the sign of the loading value) capacity values for early- to mid-range reaction times. The

second PC captures variation in the capacity function at early and late times; when PC2 is

#Note that the ST-ST capacity coeffient has not yat been implemented in fPCAcapacity.
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higher, both early and late values of C(t) are higher. The scores for each of the ten
participants, in the two stopping rule conditions, are shown in the right panel of Figure 3.
In this example, both of the components can easily separate differences in the two tasks
and between the various subjects. Combining the information from the Component plots
and the Score values, the OR condition data are consistently higher than the AND
condition data for all times and all participants. Within participants between conditions,
the largest differences in capacity coefficient functions oceur in the middle range of
response times. fPCA also highlights differences in capacity among participants. In
particular, participant S5 shows much lower variability between the OR and AND
conditions than the other participants, and so 55's loading scores are higher and closer
together in the right-hand plots.

Becanse the principal component functions are specifically chosen to describe the
variability between the capacity functions for participants and conditions, this tool
provides an excellent method for looking for influences of task and individual differences in
capacity functions. Whereas most previous analyses of capacity data have restricted
themselves to a gross comparison with the baseline model (i.e. observed value relative to
1), this analysis is more relative, highlighting differences between observed functions, and
picking up dynamic patterns across various reaction times.

For more details on fPCA for the capacity coefficient, see Burns et al. (2013). For

more general details on using fPCA in R, see Ramsay, Hooker, and Graves (2009).

Assessment Functions

The assessment functions are a generalization of the workload capacity functions that
account for incorrect responses. The original capacity coefficient established a baseline that
assumed perfect accuracy. While the standard capacity coeflicient is robust to slightly less
than perfect performance by a participant (the rule of thumb is that above roughly 90%

accuracy should be fine), when accuracy is low, either the assessment functions or a
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parametric measure such as the linear ballistic accnmulator (LBA) capacity (Eidels,
Donkin, Brown, & Heathcote, 2010) should be used.

Townsend and Altieri (2012) derived four different assessment functions each for
AND and OR tasks to compare performance on two target information sources with the
performance of an unlimited-capacity, independent, parallel (UCIP) model. The UCIP
model is augmented with an error generating process for both sources of information. Each
error process is assumed to be independent of, and parallel to, the processes for the other
source of information, but there is no assumption of independence between the correct and
error processes for the same source of information.

The correct assessment functions assess performance on correct trials and the
incorrect assessment functions assess performance on the trials with incorrect responses.
The fast assessment functions use the cumulative distribution functions, similar to the
AND capacity coeflicient, and the slow assessment functions use the survivor functions,
similar to the OR capacity coefficient.

In an OR task, the detection model assumes that the response will be correct if it is
correct on either source, i.e., if either source is detected. Hence, the first source (A} correct
processing time must the faster than first source incorrect time, The < Ty or the second
source (B) correct must be faster than the second source incorreet, The < Thy. For the
CDF (fast) version of the assessment function, we are interested in whether the response
was at or before t, o either T < t and Tae < Tay or Tpe <t and The < Ty, Using fac
for the completion time density for the first source correct process, Flay for the distribution
of first source, incorrect processes completion times, and likewise for the second source, this

probability can be written out as,

ot . :

A fac(t)[1 — Fa] 4 A fec(t)[1 — Fpy
f fac(t) [1 — Fayl ff fec(t) 1 — Fgil.
[ ]

The same pattern of logic can be used to determine the baseline of processing for each of
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[ ]
[S]

other cases, slow-correct, fast-incorrect and slow-incorrect. For a full explication of the
assessment functions and the derivation of each case, see Townsend and Altieri (2012). The
assessment function with the sft package can be used for detection tasks with the

following syntax:

assessment(RT, CR, OR, correct, fast, detection=TRUE)

The RT and CR are lists of response times and correct indicators for each trial. As in the
standard capacity R functions, the first element in the list contains the measurements from
trials in which both sources of information were present and the second and third elements
are for each of the single-source conditions. The OR input is a TRUE/FALSE indicator of
whether to calculate the assessment function using an UCIP-OR baseline (OR=TRUE) or an
UCTP-AND baseline (OR=FALSE). The correct and fast parameters are TRUE/FALSE
indicators to specify which of the four types of assessment functions to use.

For example, to evaluate a participant (S7) from the OR-decision dot detection task,

we first extract the necessary data,

sub <- 877

cond <- *OR’

#select single channel data

chanl <- dotS[Subject==sub & Condition==cond & Channell>0 & Channel2==0,
c(’RT?, ’Correct’)]

chan? <- dots[Subject==sub & Condition==cond & Channell==0 & Channel2>0,
c¢(’RT?, ’Correct?)]

#select redundant target (2-channel) data

redundant <- dots[Subject==sub & Condition==cond & Channell>Q & Channel2>0,
c(’RT?,Correct’)]

rts <- list(redundant$RT,chani1$RT, chan2$RT)

corrects <- list(redundant$Correct, chanl$Correct, chan2$Correct)
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Next, we simply apply the function:

a.or.cf <- assessment(rts, corrects, OR=TRUE, correct=TRUE, fast=TRUE,

detection=TRUE)
The output is a stepfun object, so it can be plotted using plot:
plot{a.or.cf, ylim=c(0,2))

Figure 4 shows each of the correct /incorrect and fast/slow assessment functions for
Participant 7 in the OR condition. Note that UCIP performance would show a value of 1
for all times in all plots.

In discrimination OR tasks, a participant may respond based on whichever source
finishes first. Hence, the response will be incerrect if the first to finish is incorrect even if
the second source would have been correct. This results in a slightly different baseline for
performance assessment. Now, for a correct response, either Tye or The must be faster

than both T4y and Thry. The UCIP baseline for correct-fast, OR, discrimination is:

£ t
[c_ Fac(®) [t — Pl [1 — Foa] 4 j) fac(®) [1 = Far] [l = Fail

== 1: Fac(t) [1 — Far] [1 — Fgy] At Sre(t) [1 — Far] [1 — Fpi

See Donkin, Little, and Houpt (2013), particularly the appendix, for details of the
discrimination assessment functions. The R syntax for discrimination tasks is the same as

the syntax for the detection task, but with the detection parameter set to FALSE.

Conclusion

Workload capacity analysis entails a powerful set of tools within SFT for examining
the effects on information processing of differing numbers of information sources (different
numbers of stimulus inputs, different numbers of active processing channels). Several

recent theoretical additions to capacity analyses have both expanded the applicability of
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capacity to a new stopping rule (ST-ST processing) and broadened the available tools for
capacity analysis, especially to allow more nuanced comparisons across participants and
experimental conditions. Despite being a powerful framework based on minimal
assumptions (and often relying on non-parametric analyses), SFT is underutilized within
the psychological research community, partly because researchers previously needed to
develop their own computational codes. We hope that by making the tools accessible with
open source R functions and with the present paper together with Houpt et al. (2013),
researchers can easily nse the SF'T tools more frequently.

Here, we have described briefly the new theoretical advances and provided a detailed
account of the new functions for utilizing the new tools in the R statistical computing
framework. These new functions constitute the first major additions to the sft package
beyond the initial functionality described in Houpt et al. {2013). The advantage of this
paper is that it focuses on the computational implementation for using the new capacity
tools with detailed examples of the R code. Researchers seeking to try capacity analysis
now have a standardized implementation of these functions, together with the other SE'T
tools for assessing processing architecture made available in the sft package. We encourage
researchers to use this standardized R package to reduce the chance of implementation
errors that inevitably arise when each user is left to themselves to translate from a
theoretical paper to usable code. And as additional theoretical advances are made in SFT,

we will continue to update the sft package as the state of the science for SFT modeling.
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Table 1

27

Summary of all Bounds on the Capacity Coefficient (from Blaha & Houpl (under review))
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Figure 4. Sample assessment function plots computed on one participant (37) in the the

dots data included in the sft package,
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1 Introduction

Innovation diffusion addresses the adoption of new technologies throughout society
[20]. Since its introduction, the concept has been applied to a number of differ-
ent domains not originally envisioned. and innovation diffusion is often used as a
weataphor Lo deseribe any nuiber of things (techuologies, opinions, stiiludes, de-
cisions) that spread through a population. The innovation rate (i.e., the number of
individuals who adopted the new technology) over time typically follows logistic-
like prowth {i.e., prowing exponentially, and then slowing as the innovation nears
fll adoption). Tdeally, from a marketing standpoint, understanding innovasion dif-
{usion helps auswer the question “how do 1 ensure my product takes off?” Mauy
studies have looked at this problem in hindsight, but general purpose, accurate,

and reliable predictors are not currently available.

This paper introduces a new individual modeling and simulation approach for
innovation diffusion that is predictive for a certain clags of idealized, but realistic
scenarios. The proposed model, which s certaiuly a gross oversimplification of
human behavior, allows an individual to have a state taken from a small finite set of
possible states. Individuals change their states over time by interacting with other
individuals in a pairwise fashion according to a deterministic rnle (however the
order of interactions is rendown). luteractions are assumed to ocour only between
adjacent individuals in the user-defined network. Despite the limitations of this

oversimplified individual model, there are several advantages worth highlighting.

First, and from a practical standpoint, the simplicity allows for a very efficient
couputer implernentation. For exaraple, a million simulations, each with ten thou-

sand individuals, were completed in o lew minuies using the proposed model on
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a single workstation with an adequate GPUL Second, models designed to be “re-
allstic™ ofien becowe so complex that It is difficult or impossible 10 reason about
which components are most directly influencing the observed behavior, or are even
important to the model. Simple models are more easily communicated between re-
searchers in disparate areas, and can be implemented and modified with little effort
to prodice new resulss. Furthermore, the fine denails of individual complesxity tend
1o “wash owl” when one cousiders ithe colleclive beliavior of populations. Use of a
simpler model can help circumvent these issues. Finally, a simpler model is more
amenable to future rigorous analytical treatment, especially if it can be shown that
the model elegantly captures some interesting behavior. Thus, these advantapes
make simple individual models attractive for nse in large seale simnlations, which

are necessary Lo understand and predict the collective behavior of individuals.

1.1 Nelated Work

Threshold models were one of the earliest attempts to understand how individual
varlations throughout a population affected the innovation diffusion curve [12.
These models assume that each individual has complate information abont all
other individuals and has some threshold for taking action based on this infor-
walion. However, the assumption for lndividuals o have complete information
may not always be appropriate, so relaxation of this assumption led toc models
such as the Linear Threshold Model [24. In this model, a individual has a state
encoding whether they have or have not adopted. Once adopted, the individual
caunot un-adopt, so the diffusion is progressive. With the Linear Threshold Modsl,

individuals adopt if the fraction of neighbors having adopled s larger than their
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given threshold. The threshold can be randomly assigned, or fixed (e.g., to 1,2).
Models like this strive Lo represent the belavior of an individual in & way that
allows the collective behavior of the population to be an emerzent property of the
system. The power of individual models is that, when successful, they illuminate
the relationship between individual actions and collective outcomes.

There are many other individual models of social dynamics including broad ar-
eas anch a3 opinions, enltures, languages, and erowds [3]. Another adoption model,
The Independent Cascade Model, assumes o stochastic flavor, giving vach newly
adopting individual one opportunity to influence each of it’s neighbors according
to some probability [10]. The voter model is a simple and popular model for opin-
ion dynamics [13]. In this model, one picks a vertex at random and the state of
that vertex is then changad to take on the state of a randomly chosen neighbor,
which performs coarsening via interface noise. There have been many variants and
explorations inlo this siple model. The ideas presenied in this paper are based on
the zealot variant [21,22] and the centrist/ 4B variant [26,4]. In the zealot variant,
some vertexes are “zealots” and have a bias towards one opinion over the other.
The existence of a few zealots can significantly affect the long term ontcorne of
the systewn In the centrist/AB variants, an additional intermediale state is intro-
duced, and it is assumned that states cannot change withour first passing through
the intermediate state (i.e., in order to change from A {left} to B (1ight) one must
first become AB). In the AB model, the probability that 4 — 4B, A8 — B, etc.,
i= hased on the neighborhood density of A, B, and AB.

It is known that models with intermediate states like the AB model accomplish
coarsening by reducing the surface tension along the boundary between opposing

domaius, Such models are sowetiwes referred Lo as “curvatiure driven” wodels,
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as opposed to interface nolse models. Furthermore, the models discussed above
are dillerent from rumor and epideric models, since the opiuions compete [or
territory versus quickly spreading within wvulnerable regions as epidemic models
do. The model presented in this paper is a combination of the zealot and the AB

model, and a simplification of both.

Given a model of influence and opinion or adoption lke those diseussed above,
ie it possible 1o determine a small set of individuals that, when influenced, can
catalyze cliange throughout the entire network? This question is at the heart of
the research area of Influence Maximization [5]. A solution close to cptimal is
very valuable in a marketing context, for example, as it could lead to an effective
allocation of advertising resources. The current basis for influence maximization
technigues is to assume an adoprion model like the Lincar Threshold Model |24
or ihe lndependent Cascade Model [107 and compute the smallest set of seeds thal

will cause adoption to spread thronghout the entire network.

The greedy algorithin by Domingos et al., works by computing the spread of
influence throughout the network for a given set {which is initially empty), and
finding the individual (who is not in that set) that increases the spread of influence
the most 8], That individnal is chosen and added to the set, and the algorithr
repeals uutil the inlluence has covered the eniire nelwork, with the solution be-
ing the set after termination of the algorithm. Kempe et al. later proved that
the greedy algorithm will reach within 63% of optimal for these models 15]. Be-
canze the preedy alporithm is effective, but computationally expensive, researchers
have developed techniques that improve the efficiency of influence waximization

technigues[27,6,11,19 .
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1.2 Proposad Model

The modsl to be propesed here is a dimer auromatonu model of opinion dynamics
involving zealots and curvature-driven coarsening via an intermediate state. Dimer
automata are similar to voter models; however, instead of updating one vertex at
a time, one edge is chosen per asynchronous update step. For this reason a dimer
antormaton can be thonght of as pantern matching and substitution system. Both
endpoints of that edge may be simultaneously changed, avoiding the asymmenry
problem with the voter model [3]. Formally, we assume some praph G = (¥, £)
where ¥V and E can be interpreted as the individuals and their relationships in
the model, respectively. Let =} be the state of vertex (individual) ¢ at time & To

perform an update, an edge (i, j) € E is chosen an random, and the endpeints of

the edge are updaled syminetrically such that

41 &k +1 L4 .
2t = Rizg,2j), muﬁ = Riwj, 7). (1

The application of the rule to »% and y}- can be thonght of absiractly as ¢ and j
interacting at time £, Also, ¢ is sitaply o connter of the nuraber of edges updated so
far, and only one edge is updated at a time (but edges can be updated many times
over through the course of the simulation). The extremely large space of rules for
a given set of states is gives dimer automata the potential to model a wide range
of phenomena. The rule behaves as a finite state antomaton from the viewpoint of

each z;. For the opinion dynamics model for this paper, let the rle be defined as

T if c=0
Romy=40 ifr>0and - =|r and 7 £ 0 {(2)
o else
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which is basced off an carlier 3-stare dimer autematon rule for dorain coarsening
[T, This logic encoded in this rule Is “generalized,” weaning the rule can support
an arbitrary number of possible opinions without any modification.

It is important, to differentiate between the opinion of an individual and the
state of that individual. An individual with state ¢ has opinion |¢|. Thus, the
sign of the state designates whether that individual is a zealot or not (zealots are
negative). State 0 acts as the intermediane (i.c. centrist/AB) state that positive
states must pass through to chouge from one opinion to another. Since dimer
automaton rules are deterministic, the proposed model is a simplification of the
centrist, A3 model. The allowable transitions are equivalent, but it is not necessary
to know the how many neighbors have a particular state, which simplifies the
model and improves the coraputational efficiency. Finally, it is worth noting that
the meaning of “zealot” in a dimer antomaton is slightly ditferent than in the
previous literature. Voler model zealols have a bias towards a particular opiniou,
which is implemented as an increased probability that the zealot will take on
that state. However, a zealot in the dimer automaton model can be thought of
having maximal bias towards a particular opinion (i.e., the probability the zealot
takes on its favored opinion is 1). This is a result of dimer automaton rules being
deterministic, as opposed to voter model rules which are probabilistic.

For clarity, consider the l[ollowing example. Suppose thers are two political par-
ties referred to as “red” and “blue,” which are equivalent to opinion 1 and opinion
2 respectively. Suppose Alice and Bob are friends (i.e.. the edge (Alice, Bob) ¢ I
go the dimer automaton can randomly choosze the edge connecting Alice and Bob
and update thelr states). Let 2% and =% refer to the state of Alice and Bob, re-

speclively, I Alice and Bob are both red or boill blue (ie., ”i& = a;'g), then no
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change ocours when they interact since R(1,1) = 1 and E(2,2) = 2. However,
suppose Alice is red and Bob is blue (ie., ,Uji =1 aud a:fg = 2); alter they inleract,
both Alice and Bolb would become undecided and susceptible to influence (ie.,
xil' L= xfe‘ 1 — 0 since R{L.2) = k2, 1) = 0). It would then fall to another friend
of Alice and/or Bob to reorient their affiliations. For example, suppose Eve is
friends with Alice, and Ewve is blue. Then, when Eve interacts with the nndecided
Alice, Bve persuades Alice Lo becowe blue (e, J;TQ =2 xince KU, 2y = 2). Thus,
Alice has switched from red to blue through the influence of both Bob and Eve.
This mechanism is what drives the curvature based dynamics since, on average,

Alice will adopt the opinion of the majority of her neighbors.

The zealot i= 4 firaple mechanism intended to account for stubborn individnals,
slnce o zealol never clianges thelr opinion, In the politival debate, 1L Iy venerally
accepted that a certain percentapge of individuals will never change their political
affiliation: in fact people may change their friends to suit their affiliations [5 .

8o, suppose this time that Alice is a red zealot, and Bob is still just blue (i.e.,

a4 = 1and 2% = 2). When Alice and Bob interact, Alice remains a red zealot,
bul Bob becowes undecided (Le., 2% = =1 and 25 = 0 sines R(—1,2) = -1

and Ri(2,—1) 0}. The same effect happens when Alice and Tve interact. If Alice
and Bob interact again {with Bob now undecided), Boh will be recruited over to

-2

red from undecided, however Bob never becomes a zealot {ie., 2y = -1 and

rftgg = | since R(—1,0) = —1 aud R{0,—1) = 1). The ruls is designed such that

unon-zealots never becolne zealols, and zealols never become non-zealots,
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2 BExperiments

2.1 Contral

Wa are interestad in wmderstanding how opinions collactively chanes over time,
and how this changs depends on the initial confipieation of the system (e, mg for
aach £ € ). For thiz section we consider 3 sirnple cass whers the system is almost
antiraly non-zealot blue, asida for 2 handful of red zealota. Each sealot i= assigned
to a randomly chomsn vertex in the graph. Dioes the system reach a consansus!
sfter 3 ressmmable amourt of time? An exampla?® of this is shown in Fig 1. The
four snapshots show the confipuration of the systam aftar the application of Eqn 2
millicns of titnas. Initially the systerm consistz orly of blue sates (shown as white)
anrd a few red meslots (shown as black), but the zealots are able to quickly spread

thair influenee znd dominate the antire systam.

&+ N
PR I

Figz 1 The confinration of the systemn over time (oving from 1ot to mdght) shows the

oonsensis transitioning from opinion 1 {white) to opindon 2 (Blad).

i Consensus is measured as the ratio of the mumber of opinion 2 nonzealots to total non-
mealots. Zealots ape 1ot out of this ratio sinee the population is knoam ot the start of the

sirnulation and doss not changs.
2 The graphnsal is o 100 ¥ 100 square lattice with won Heurnenn neightorhoods and periodis

boundary eonditions, sines this has o Sraightiorwerd vimalization.

43
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For subscquent experiments in this section we use & Watts-Strogatz small world
wetwork [29° with rewire probability 0.1 und =ize 100 - 100. Fig. 2 shows Low Lhe
consensus changes over time. The dynamics are more complicated than classical
population-based models of innovation diffusion, which often follow a logistic curve.
The system poes through a period of slowing growth, then quickening growth, and
again slowing as consensug is nearly reached. Thig enrve exhibits two inflaction

poinks, a3 opposed Lo the logistic curve which Las only one.

Diffusion of Inngvation

oz ,
L 20 0 80 [ 100
time

Fig. 2 The average consensus over time has two inflection points, a more complex and realistic

hehavinr than the typical logistic curve associated with innovation diffiusion.

2.2 A Simple Experiment with Zealots

What effect, if any, do zealots have on the systern, and how do we measure this? To
hegin, we must first run & control experiment with no zealots present, and chserve

the outcomes ol dillereni ratios of initial opinions. In other words, whal is the
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Opinion density and consensus: small world

Ly I

0.8

0.8 . 1

o4

final configuration

0.2

0.0

-0.2 L
ga0 0.45 055 060

050
Inltial configuration

Fig. 3 Control experiment. varying the imitial density of opinion 1 and 2 (no zealats) for a

grall world network {Watts-Strogatz, d=2,p=11)

outcome starting with mostly red versus mostly blue? Fig. 3 shows the outcome
of 9216 experiments® with varying opinion densities in the initial confignration.
There is owuly a small window centered around 0.3 (i.e., equal quantities of opinion
1 and 2) where the density of the final configuration is between 0 or 1 (Le., the
outcome is uncertain). So, 0.5 appears to be a critical peint for the system with
any density slightly above or helow moving quickly to 1 or 0. Based on this, we
cal let 0.5 be a reasonable thresheld to determine whesher or non the zealots have
taken over the systein. In other words, once an opinion is held by more than than
half the population, that opinion tends to quickly take over the rest of the nerwork.

Now we can deterinine what initial density of zealots is necessary to shift the
consensus from the prevailing opinion to the opinion of the zealots. If zealots only
exert short range influence, then the control suggests the threshold for consensus

= Experiments were efficiently conducted in parallel on the GPU using the technique de-

scribed in 2]
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would remain close to 0.5, Repeating and averaging a number of independent trials
for o range of zealol densiliss tests this hypothesis, For each experient and once
the number of zealots are determined, sach zealot is assigned to random vertex
in the network. We define the “critical zealot density” Z, as the initial zealot
density that produces a consensus above ¢, and for this experiment let ¢ = 0.5.
This quantity is computad in a straightforward manner according to Algovithm 1.
Au example of this measurement, is shown iu in Fig. 4, where Lhe order provided Lo
the algorithm was a random permutation of the nodes in the network. Surprisingly,
we can see that Z, [approximately 0.074, shown by the dotted line) iz nearly an
order of magnitude lower than the density observed in the control. Zealots have a

mnch higher influence on the onteomes than expeeted.

Algorithm 1 Compute Z, for a given order.
1 Let {wq, v

)
R

Loy b be an ordering of the vertices in the network
min i
5. t. CONSENSUS({) > ¢
3 Z, =4V
4 procedure CONSENSUS({}
&, XN:—{1.1,..1} & las length |V

. K.

)= —2 > assign zealots based on crder

run an experiment with Xg as the initial configuration
5 measure the consensus at the end of the experiment

9 retirn e ¥, 82 —

VT 208 2t b TNeasITs COnsansis

10: end procedurc

46

Distribution A: Approved for public release. 88ABW Cleared 04/01/2016; 88ABW-2016-1588.



Opinions, Influence, and Zealotry 13

Measuring the critical zealot threshold

o /

02 / ]

0o —

CongansUs

0.2 L ' L '
aifﬂﬂ 0.02 t0a 0.06 008 010 012 6l1a 016
zealot density

Fig. 4 Determining the critical zealot threshold Z. by measuring when comsensus passes 0.5,

2.3 Varying Network Suricture

The previous experiient is repeated with different, 2raphs 1o delermine the el-
fect of the network used on the critical zealot density. The Warts-Strogatz small
world network [29] is a common way to explore how a model or phenomena is
affected by network structure. This model defines a rewire probability p, which
generates networks that transition between uniformity (c.2., & square lattice) and
randomness. From Fig. 5 we can see that the graph has an inleresting effect on the
critical zealot threshold. As the rewire probability is increased (and the network
becomes more disorganized) Z, increases quickly. However, this threshold appears
to level out and does not surpass 0.1, even for a fully disorganized network. From
this we can conclude thar the network structure has a significant effect on Z,, so

subsequent experiments consider a variely ol networks.
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0.005 Effect of network structure on Z,
. . h - -

- .
PUTP et T
0.09¢ -

0.085 b

4 o
o )
=3 k-]
r] k=]

0070 ! 1

0.065 /

0060 1

critlcal zealot density

0a 0.6
rewire probabliity

Fig. 5 Asthe network transitions from arder to disorder, the critical zealot density increases.

3.4 Influence Maximization

Inflnence maximivalion is a useful application for models of opinion dyuamics
such as the one proposed in this paper. Given a model and network, influence
maximization helps us find a small set of individuals that can precipitate a change
throughout the entire network [R . For the zealot dimer antomaton model proposed
in this paper, the problem ol influence maxinizaiion translates into linding the
optimal set of nodes in the network that should start as zealots in the initial
configuration. Past research in influence maximization has shown that the greedy
alporithm ontperforms random selection as well as other heuristics based on social
nenwork analysis measures such as closeness, betweenness, and degree. The purpose
of the following experiment is 1o deierwine whether this resuli also holds for the
zealot, dimer automaton model.

Hased on the experiiment in the previous section, we kuow that the siructure

of the network can have a significani ellect on the conseusus (Lreshold Z,, even if
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Table I Networks for Influence Maximization Experiment

name |V | & details rof(s)

wiki-Vote T11A 103680 who vites on whom for Wikipedia ad- 17,16]
minship elections

ca HepTh ORTT 25008 Hich Enerey Physics—Theory arXiv (18]
collaboration network

ca-GrQe h242 14496 General Relativily and Quanlum Coz- [18]
molugy arXiv collaboralion network

FPower Law Cluster 10000 29000 random scale free network with m = [14]
dp— 01

Frdés-Rémy 10000 39408  random graph with p =123 x 1072 9]

Wattz-Strogatz a0 20000 randem small world network with & = [29]
9.p=02

zealots are chosen raudomly. Therefore, the following experiment considers several
types of networks (see Table 1) as well as several ditferent heuristics for influence
maximization. Ileuristics are hased on centrality metrics from social network anal-
veis centrality: degree, closeness, and betweenness [28]. Degree centrality simply
wmeasires the number of neighbors adjacent to a given node, Closeness centrality
is the inverse of the average distance for & given node 1o all other nodes. Beiween-
ness centrality considers the fraction of all shortest paths that pass through a given
node. Each of these metrics are measured for all nodes in the network to determine
a ranking. These metrics determine an ordering of the nodes in the network, which
are used by Algorithin 1 to compute the critical zealot density resulting from that

particular ordering.

These heuristics are compared againust a variation of the classical greedy algo-

rithm for influence waximization [3], adapled for use with the zealot dimer automa-
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Table 2 Summary of Results for Influence Maximization Experiment

name betweenness random closcness degree grecdy
Frdos Renyi B8% ¥ 1072 11ax 107 7R4 1072 @43 x 1072 8.44 1071
Watts Strogatz GO0 % 10 7 G623 %10 ¥ 04h 00 ? 402 5 10 3 3.50 % 10 2
Power Law Cluster 910 x 107° 114 x 107" 120x107% 9,00 x 10— % 9.60 % 1073
ca-Gre 1.81 x 10—% 982 x10-% 530 10-= 358 G 1072 1.37 x 10—2
ca-Heplh 104 « 10—2 822 «10-2 173 % 10-% 8.00 x 10—3 1.49 = 102
wiki- Vote 970 < 107%  L21 ©107° 85T <107% 815 x 1072 114 % 107"

ton model, which is outlined in Algorithm 2. This algorithm starts with an initial
confignration Xo and s sen of allowable moves encoded in M = {(#1, m1), (w2, 72)...},
where the £*° move changes the state of node vy to o in the initial configura-
tion. In the simplest case where we start with all opinion | and want to see how
many opinion 2 zealots are needed to reach the critical threshold, we would let
Xo=(L1,..,D)and M ={{(i-2) : 4=V} Algorithm 2 also requires an objec-
tive function @ to minimize. In this case ¢ measures the consensus by counting the

nodes i the neltwork not having opinion 2, thus
1 . . o
¢:mz1 M2 oy} {3)
Haa

The resulis of the comparison for each graph and heuristic are shown in Flig-
ure 6, and a summary of the critical zealot densities is provided in Table 2. Sur-
prisingly, no single heuristic nor the greedy algorithm is a clear winner, though,
the random heuristic nsnally results the worst critical density. Another interesting
feature sgen in Figure 6 is that the greedy algerithm tends to dominare the cther

Lieuristics early iu the simulation, bul may not be the first Lo reach criticality.
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Opinions, Influence, and Zealotry 17

Algorithm 2 Greedy algorithi for inllugnce maximization for the zealot wodel
1: Np is the initial confipuration of the network

[*]

@ is an objective funcrion that scores the configpuration of the network

3: M s the list allowable moves

4; M = cwrent random nwnber generator stale
5 while convergence criberia not met do b can be an arhitrary threshold e
A: k, — arpmin fCORR(X, k)

R

T (i.0) = M%)
B Xi#y=w
0 end while
10: procedure score{X, k)
11: set random number generator state to M
12 (f,0) = M(K)
13 XD i=o

14 X« '=result of experiment with initial input. of X

15 rveturn G{X ¢}

18: end procedure

2.5 Competitive Zealotry and Political Polarization

Realistically, we can expect to encounter both individuals who advocate for change,
and those who resist it. Tn other words, we shonld investipate scenarios where
zealons are presens for both opinions. Clearly the outcome will depend on the
ratio of thess two types of zealols, but 1i mmay also depend ou Lhe total quantity
of hoth types of zealots as well. Fig. 7) measures the consensus of the system for
862 different pairs of zealot densities in the range from 0 to 0.3. For each pair, the
experiment is rerun 100 times for a reasonable zample size. In this fipure, a line
U4

is drawn showing when the consensus crosses 33% and 88%, which separates the

diagram into three distinct regious.
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Opinions, Influence, and Zealotry 19

If the consensus was solely dependent on the ratio of corapeting zcalots, we
would expect the transition beiween opinion 1 and 2 to follow a siraight line whose
slope was equal to the critical ratic. However, this rransition follows a curved line.
Furthermore, when the quantity of both zealots passes a certain threshold, the
outcome becomes meta-stable (1.e., a stable combination of both opinions), which
we refer to thig ag the *nndecided” phase). When the density of opinien 1 zealots
is low (e.g., < 0.1), ithe system chooses only belween red and blue, However, with
high enocugh densities of red and blue zealots, the systemn tends to remain in an
undecided state, with significant amounts of both opinions present. This suggests
that this model may be applicable to phenomena like political polarization where
opposing opinions ave held by significant fractions of the population.

To test this, we apply the inlluence waximization algorithm for the zealol
muodel to a dataset consisting of politically charged communications between users
of social media 7]. In addition to containing a social network, each node in the
datazet iz labeled as either left or right leaning, providing ground tmch about
opinions that ean be leveraged. Applying influence maximization to this dataset
requives some wodilications since we are now waxiwizing influence lor more than
one target opinion. First, we assume that the initial configuration consists entire
of some arbitrary third opinion. thus Xy — (3,3, .., 3). Now, assuming that Xy is
the target confignration of opinions in the network {i.e., the ground truth), the

objective function becomes

b= 1=z - Xp(i)) (4

el

and the sel of allowable moves are M = {{i. —X7(i)) : i€ VL
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Opinions, Influence, and Zealotry 21

A further challenge is to thon verify these rvesults against actual data such
as marketing trials or slections. Real world dale is often incomplete or conlaing
uncertainty, so, an additional path for future work is to incorporate this into the
model, perhaps by biasing how edges are randomly chosen by the dimer automaton
according to a given probability distribution. Additionally it may be reaszonable to
upgrade the model so an individual’s state lies on some spectrum betwoen the nwo
extreies instead of being a shiarp choice belween two opposing opinions. Hopelully
this can be done in » mauner that preserves the simplicity and elegance of the
original model. This approach may be necessary if the simple model presented in

thiz paper is not sufficiently predictive for real world data and scenarios.
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Abstract

We provide the n-channel extension of the unified workload capacity space bounds for
stanedard parallel processing models with minimum-time, maximum-time, and gsingle-target
self-terminating stopping rules. This extension enables powerful generalizations of this
approach to multiple stopping rules and any number of channelg of interest. Mapping the
bounds onto the unified capacity space enables a single plot to be uged to compare the
capacity coefficient values to the upper and lower bounds on standard parallel processing

in order (o make direct inferences about extrame worklaad capacity.
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Generalized n-Channel Workload Capacity Space

The study of the combination of multiple sources of information is ubiquitous in
cognilive pavehology, Fxamplea include vieual and memory search tasks, in which the
multiple sources are the array items through which a participant must search, and
eomplex decision making tasks in which multiple types of information must be combinerl
to make & good decision. One question that often arises is the extent to which adding
more gources of information atfects the processing of each individual gource. For example,
one might inguire whether it takes longer 1o determine the presence of o particular object.
in a stimulus when there are more total objects in the stimulus. In this paper, we refer to
a coghitive syatem’s response to variations in the number of information sources as ite
workload capacity.

One of the most commonly used measures of workload capacity iz the Race Morlel
Inequality (Miller, 1982), which gives an upper bound on the response gpeed of a parallel
processing model with context invariance (defined below) for testing one versus wwo
sources of information uging cumulative distribution funetions (CDFs) in the context of
minimum-time, redundant target decisions. Subsequent to Miller's paper, the basic logic
of the Race Model Inequality has been extended to a develop lower bound on
minimum-time models as well as upper and lower CDI" hounds for other stopping criteria
(c.g., all information must be processed rather than any one source) and more sourees of
information {Grice et al., 1881; Colonius & Vorberg, 1994). Using a stronger set of
agsumptions, together with a well-defined bageline model, Townsend and colleagues
derived an equality to test workload capacity, termed the capacity coefficient (Townsend
& Nozawa, 1995; Townsend & Wenger, 2004; Blaha & Townsend, under review).

Recenlly, Townsend & Hidels (2011) introduced the notion of a unitied workload
capacity space for plotting both the capacity coefficient and the CDI' bounds on standard

parallel processing on the same plot space. This work served to transform (he upper and
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lower bounds on paralle]l processing from probability space {ordinate values bounded on
[0, 1]) into the same unit-less axis as the capacity coefficient, with ordinate values bounded
on I}, +oo). Practically, Lthis unified space allows investigators Lo directly compare in the
same plot capacity coefficient values with the bounds on standard parallel processing,
which enables some estimation of possible extreme capacity values (very high super
capacity, very low limited capacity), az well as some inferences about possible model
architectures (e.g. violation of the race model with super capacity implies a possible
coactive model architecture). Unfortunately, Townsend & Fidels (2011) limited their
derivations to models with only two possible operating channels. The capacity coefficients
are defined for 2 > 2 channels (Townsend & Wenger, 2004), as are the CDF bounds on
standard parallel processing (Coloniusg & Vorberg, 1994), so the restriction ton 2
channels is an unnecessary limitation of the applicability for the new unificd spacce.

Herein, we complete the derivation of the unified workload capacity space by
extencing the transformations of the parallel model bounds to the general case of n
channels, where n > 2. We also provide the alternative versions for the unified space when
the marginal distributions of the channels are assumed to be independent and identically
Adistributed (T1T)), which serves to simplify the computations. Finally, in addition to the
AND and OR casges derived in previous work, we add the bounds for single-target
sel Flerminaling processing, recently introduced in Blaha (2010) and Blaha & ‘Townsend
(under review).

We use the [ollowing notation throughout the paper. Let Bo(8) = P [1p <2 ¢] be the
CDF of response times for a system with the set of n active channels, C = {1,...,n}. To
dencte the CDF of a single channel ¢ among the C channels, we use F,¢(), and to denote
the processing of a single channel ¢ alone (i.e. no other active channels in the model or
n = 1), we uge F,.(t). We use set minus notation C % {c} to indicate the full set of channels

-

O exeepl e
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In this work, standard parallel processing is uged to refer to a processing system
that exhibits independent channel distributions (no cross-talk, no statistical
facilitalion/degradation). This means that for any number of selive channels, the CDF for
all channels active gimultaneously is the product of the marginal distributions,

Fo(t) =TTy Foc{t). Additionally, standard parallel processing exhibits context
independence, or context invariance. This means that the marginal distribution of any
given channel « is identically digtributed when any number of additional channels are also
operating. We denote this by F.(t) = F.c(#). Functionally, this allows the individual
channels to be estimated by single-target or single-feature conditions in an experiment,
which often greatly simplifies the number of conditions the experimenter needs to test In
ordet to uge these models.

Additionally, we note that standard parallel processing is often referred to as the
parallel race model, the parallel horse-race model, or simply the race model (see, for
example, Miller, 1982). This analogy specitically vefers to the case when the fist channel to
finish processing iz enough to make a response. This is the case of minimum time
processing, also termed first-terminating stopping or an OR (logical OR-gate) stepping
rule. Thiz would be the stopping rule engaged in tasks like viznal search among redundant
targets (no distractors) where the identification of the first target to be searched is encugh
Lo complete the task. The standard parallel model architeeture is engaged under other
stopping rules, as well, including exhaustive stopping (last-terminating or logical AND
stopping), and the in-between case of singlo-targel seli-tenminaling (8T-8T) stopping. In
the former case, all channels must complete processing before a response is made. In the
latter case, the completion of a specific gingle target channel is enough to terminate the
processing, but the target channel may be any of the n possible channels - first, last, or
somewhere in between. Each of these stopping rules changes the form of the eapacity

eoetlicient and the predietions of the race model bounds, g0 we will presenl the derivation
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of the bounds in unified workload capacity space for each model in turn.

Before we get into the derivation of the unified response time bounds, we want to
rermind resders Lhat all CDFs and survivor functions exist ¢n the range [0, 1], o the
natural logarithm of those functions produce negative values, Thus, cumulative reverse
hazard functions (natural log of the CDF) exist on the range (—oo, 0, ag <o the natural
logarithms of any bounds formed by a single CDI or products of CDIM¢ (sums of CDI's
can range above 1, and so the natural log can exist on (—~o, +0o0)). These negative values
will influence the derivation of inequality chains throughout this paper. Note alsc that the
cumulative hazard function used in the minimum time bounds, is found as the negative
natural log of the survivor function, and eo it exigts on the range [0, 4, leaving fewer

negative signg to track in thoge proofs.

Minimum Time Bounds

Lol Fe(t) = P ming(Ty) =< t], for all real ¢ 2 0 and ¢ = ¢, be the CDF lor an
n-channel system operating under a minimum time stopping rule, where ¢ — {1,..., n} is
the set ol all possible channels. Deline b5 {th=F :min(n_\;_z-} 1, 1‘] as Lhe CDE I all
channels except 4 are running, and define Fr 4 ; (t) — P :lnin(:‘\:é:j’, T. < t], i# 4, for the
CDF of all channels but ¢ and j. Further, define the survivor function as S:(t) = 1— Fz(f).

We measure the amount of work completed in each channel ¢ with the cumulative

hazard function, defined as:

—_ rt fe(r) _ AR
Hc(()_j 2 (T)dr—fln(f-c({))

=0 n

which can easily e estimated directly from the empirical response time survivor function
for any experimental condition.
The capacity coefficient for minimum time (first-terminating, OR) processing for an

n-channel morel i3 delined as aratio of cimulative hazaed Tunetions (Townsend &
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Nozawa, 1095; Townsend & Wenger, 2004):

. H-(1)

el

(1)
The numerator in Equation | is the observed processing of » active channels, while the
denominator is the prediction of a benchmark standard parallel processing model,
exhibiting independence and, in this terminology, unlimited capacity. Thus, capacity i
qualitatively inferred relative to a ratio equal to 1, which iz where observed processing is
equal o the benchmark model prediction and unlimited capacily is coneluded. [T
Cor(t) > 1, then super capacity, or better-than-benchmark, performance iz inferred. And
if ("on_(t) < 1, then limited eapacity, worse-than-benchmark performance, is inferred. !
The ariginal race model CDF hound by Miller (1882) provided an upper bound on
the CDF from the parallel, minimuni-time model with » = 2 channels given by
Frap(t) < Fall) + F(1), where A, B denate the two parallel channels. Grice et al.
(1984) introduced the concept of a lower bound for the same processing model, which is
detined ws £y 4 g (1) > min Fa(8), Fe(t]]-
Colonius & Vorberg (1994) provided the n-channel generalization of both CDF

bounds on parallel minimum-time processing in the inequality chain

max [Foy iy (8] < Fe(t) < min [Fo s () + Foy 0 (0) — Foya (8] (2)

d ' ¥
Theorem 1. Zhe unified workload capacety space inequality chatn for the copacity of an
n-chunerel, marmam-time systemn 1s, for s & 3§,

In{min; [SCW; )] < Conlt) < Ind{max; ; [uc\.\u; (8] 4 Sp 0 (8) — Sea s (0] 7
FHIIOR el

Proof. From Equation 1, Cop(¢) # In{[_; S.(#)} = In{S:(¢)}. Rewrite the upper boun

frem Equation 2 in terms of the survivor functions to get

Se(t) 2 max [Sey iy (0 — Sev 5y () — Soygign ()] -
g N

64

Distribution A: Approved for public release. 88ABW Cleared 04/01/2016; 88ABW-2016-1588.



Generalized Capacity Space &

It follows that

ke3
Cow(ty+ In{] [ S.)} > ln{n}%x [Scugey (8 + Sovgs () = Sevgy (9]}
c—1 ’

= Conlt) < In{maxg; [Soy 5y (8) + Sovgy (8) — Sevop()] )
- Corlt) = In{TT—; Selt))

Similarly, rewrite the lower bound of Equation 2 as
min {SC\,\{,}_ (£1] = Seih)

and 1t follows that

L

Corl(t) * III{H Sa(t)} << hl{_m?_in LS'(-\_{:-}(#)J ]

=1

o Infming [Sen (0]
(i :

= oS T )

C

Under the asaumption that the marginal distributions for cach channel are 11D, then
all Fp,q(t) are the same for any cholce of ¢ < C and we can write thiz as 2 11 (t) to
dencte the CDF for 1 active channels. Similarly, the 11D assumption means the
Fo g4y () are the same for any choice of 1,7 < C, and we write thiz as Fooa (t) for the
CDF with n — 2 active channels. Consequently, Equation 2 simplifies to (Colonius &
Vorberg, 1904)

Foay (8) < Fe(t) < [2% Foyyqy(8) — Foygaa, (8] (4)

Lemma L. When the marginal distributions of the parallel model are 1D, the unified
workload capacity space inequality chamn for the copacity of an n-channel, mmimum-tirmne
system, s defined by

In{2 xSy (1) = Sy )
In{TTr, S.t)})

In{Se ¢ (£}
— U e (o) <
(I, Self1) oplt) <

The proof of Lemma | is similar tc the proof of Theorem 1 and is left to the reader.
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Maximum Time Bounds

Let Ge(t) P mazc(T.) < t], whereagain ¢ {l,...,n} is the set of all n channels
and ¢, be the cumulative distribution funetion of response times for an #-channel
gystem under a maximum time (logical AND, exhaustive) stopping rule 2

In order for the capacity coefficient inferences to be consistent with those for
Equation 1, we utilize the cumulative reverse hazard function to measure the work
throughput for each channel in under the maximum-time stopping rule (for a full
discussion of the reasoning, see Townsend & Wenger, 2004; Townsend & Fidels, 2011).
The cumulative reverse hazard function for processing channel ¢ iz given by

t .
Reli) = -[—0 CS;L.-((:')

dr = In{G(8)

which, again. can easily be estimated directly from the empirical response time CDF for
any experimental condition.

The capacity coefficient for maximum time processing iz defined as {Townsend &
Wenger, 2004)

n g
Canpit) = :C%(];;m (6

T'he nunierator in the AND cagze is the prediction of the benchmark unlimited capacity,
independent parallel model, while the denominator is the observed processing of n
channels under the maximum-time stopping rule. Capacity inferences, again, are relative
to the value Canp (L) = 1, which indicates unlimited capacity. Canp(l) > 1 indicates super
capacity processing, and C'anp(f) < 1 indicates limited capacity processing.

Nerivid by Colonius & Vorberg (1894), the general bounds Tor w exhaustively
processed channels are

n}f}x [Govga(t) + Geygp (1) — Gova p (8] = Gele) = m.j“ [Gonganit)] - (7)
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Theorem 2. The wafied worklowd capacity space wequality cham for the cupucily of an

n-channel, martmuwm-tine system is, fori = j,

In{[T,_y Ge(t)t oy e TR Ge(t)
- - - = Canplt) = - , .
In{max; ; [GC\{:'} (t) + GC\Zle (t) — GC"\L?\J}(‘{)] ' In{min; [Gc\ﬁg}(tﬂ '

.

(5)

Proof. From Equation 6, Canp(t) + In{Gz (i)} = In{[12, G.(¢)}. Utilizing Equation 7, it

follows that, for the upper bound
Canp(f) + In{Ge (81} < Canp(t) + In{min L.(?('\{s} (0]}
K

= In{] | G=(t)} < Cannit) + In{ min (G (0]
c=1

I, Gu(8)
" Infming (¢ — > Canpli).
In{min; [GC\,[;}(I‘,)_ Yo AND{E)

Similarly, for the lower hounc,

Canplt) # In{Ge(t)} = Canpl(t) + ln{_n}a;x [GC‘\U} (t) + Goyy (8) = Goepn (8
n

- IH{H G’C(t)} = C'ANL)(t) * III{II}E}X [GC'\‘J‘.EJL (t) + GC\U}“) - G‘x\{{‘j}(t)-

_ In{l 1 Gelt)}
7 Infmaxe; [Geya (0 + oy () — G ()]}

Under the assumption that the marginal distributions for each channel are 11D, for
any choice of ¢ = C, all GC\{E} {t) are the same and for any choice of 4,7 < , all G’Lm\{.i‘j}(t)
are the same. We write these as Gy (6] and Goygq g3 (1), for v — 1 and » — 2 active
processing channel systems, respectively. It fcllows that Equation 7 simplifies to (Colonius

& Vorberg, 1904):

24 Gy (t) — Geyop ()] < Geld) < Gy yyt). (9)
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Generalized Capacity Space 11

Lemma 2. When lhe marginal distrbulions of the parallel model wre 1D, the wfied
workload capactty space inequality chain for the copacity of an n-channel, marimum-tine

system is defined by

TT 7 4 T o e
il Gl - Canptt) < et el (10)
042 # Gy ) (£) = Gy 1 ()} In{ G gy ()7

The proot of Lemma 2 is similar to the proof of Theorem 2 and is lett to the reader.

Single-Target Self-Terminating Bounds

Blaha (20101 recently introduced a new capacity coefficient for ST-ST processing,
with full details explicated in Blaha & Townsend (under review). For completeness with
respeel to the resulls in Townsend & Eidels (2011), we hore give the ST-8T parallel
processing CDF bounds for both # = 2-channel models and »n > 2-channel models.

Let Fre(t) = P [The < ¢ denote the CDF of response times for target channel

kel Let Kyelt) = _}LO gt(‘ﬂdr = In(Fj () be the cumulative reverse hazard

function for target channel & = .
The capacity coefficient for ST-ST processing is defined as (Blaha, 2010; Blaha &
Townsend, under review)
. . K(t)
Cyrer(t) = Ko o(8) (11)
The benchmark parallel model is in the numerator of Cyrar(t), and the observed
processing of target channel & among » active channels ig in the denominator. The
inferences about unlimited, limited, and super capacity are the same az the OR and AND
models.
The bounds on ST-ST processing are

[TE® < Bty <> Fp). {12)
e—1

e—1
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Generalized Capacity Space 12
For # = 2 channels, with the two channels denoted € = {1,2}, the bounds simplify to
Fi{g) = F5(8) < By o (8) = K [E) — Falt).

Theorem 3. The unified workload capacity space wequulity cham for the capactly of an

n-chananel, single-target self-terminating system is,

n{F(t)} L In{R() )
S mie®) = S W R 1

The proof of Theorem 3 is nearly identical to the proof of Theorem 2, substituting
the capacity coefficient and bounds for ST-ST capacity in for those of maximum-time
procesging.

Under the agsumption that the marginal distributions for each channel are 11D, we

use Lhe CDF of a single channel ¢ € ¢, and rewrite Equation 12 as

[Fel ) = P () = o= Ie(t). (14)

— J

Lemma 3. Whew the snargined disbeba tions arve TN, the wnafted capaciy space bounads for

ST-ST processing are

W{Fet o 0 In{F;. ()}
It EL() — ST S e R

—
—
o

-

The proof of this is trivial and left to the reader.

Conclusion

We have provided the straight-forward extension of the unified workload capacity
space bounds for standard parallel processing [rom the limited existing detinitions [or

n 2 channels given in Townsend & Eidels (2011} to the full »n > 2-channel situation for
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Generalized Capacity Space 13

minimum-time, maximum-time, and single-target self-terminating stopping rules. The full
zet of bounds, including all special cases considered to date, are summarized in Table 1.
Thig extension enables powerful generalizalions of this approach Lo multiple stopping rules
and any number of channels of interest, in order to model the complete processing
mechanigms for an experiment of interest. Mapping the bounds onto the unified capacity
gpace for any number of channels enables a gingle plot to be used to compare the capacity
eoefficient values to the upper and lower bounds on standard parallel processing in order

to make more direct inferences about extreme capacity values.
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Generalized Capacity Space 16

Footnotes

L'We note that appropriate statistical tests for inferences about Cor(t) are available
(Houpl & Townsend, 2012), bul their details are beyond Lthe seope of Uhis paper.,
?Note that the change in notation here iz to simply help the reader distinguish the

CDFs for minimum- and maximum-time stopping rules.
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Generalized Capacity Space 17

Swmmary of all Bounds on the Cupacity Cocjfficient

LOWER. BOUNDS

Stopping Rule n-channels

n 1D channels 2 channels
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The Points to Pixels Pipeline (P2P°): an Open Source Framework for
Multivariate, Similarity, and Network Data Visualization”

Dustin Arendt™
Alr Force Research Laboratory

ABSTRACT

Principal Components Analysis, Multidimensional Scaling, and
other advanced dimension reduction techniques are often used 1
10 help visualize complex multivariate datasets. However, these vi-
snalizations reduce observations to a cloud of points, which may
stop short of comveying more the interesting topological relation-
ships preseut, Our contribution 1s P2P?, a modular framework for
transforming a set of points or observations into a visvalization that
comveys information about the simplicial complexes present in the
dataset. The framework is abstracted in a manner that open source
Pyvthon packages are be leveraged to pertorm the computational
“heavy lifting” In addition 1o making this framework acceasible
to a moch wider audience, this allows a more sophisticated com-
pougnt W replace Leurly any portion of the pipeline. Au udditions]
comtribntion of this work is a robust methed for computing a global
distance threshold that is grounded in informatien theory and com-
plex network theory,

Tndex Terms: (.22 [[Hacrete Mathematice]: Graph Theory—
Graph Algoerithms; H.1.2 [lnformation Systems|: User/Machine
Systems—Human information processing;

1 INTRODUCTION

ANY problems in data analytics revolve aronnd discovering
useful insights from a set of observations, However, obser-
vallons could tuke onwany different lorins given the contexi, For
example, observations could consist of sets of points embedded in
Iigh dimensivud spuce. Or, observatious could be meusured as o
matrix of similarities between other abservations. Furthenmore, ob-
servations could be represented as a network of relationships be-
tween other observations.  Additionally, each ohservation 1might
also be labeled with some kind of descriptive attribute or class (e.g.,
man/worman, young/old. sick/healthy. etc.).
Given a set of observations, usetul insights we may wish to gain
can he anawers to questions like:

s Which ohservations are “normal” and which are “outliers?™

o Do observations growp together, and how are those groups
related? und

+ Whatis the relationship between classes and observations?

There are many sophisticated techmiques from machine learning,
slulistics, cornplex network atalysis, and other fields thal can be
applied to help answer the ahove questions. However it is usually
the case that specific criteria about the data and the answer being
sought must he met hefore any fechnique can he effectively lever-
aged. For this reason, visual analytics can be employed to obtain
an overview or basic intuition about & dataset before more sophisti-
cated techniques are applied.

"PA#
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Manv of the popular tools for dimension reduction and embed-
ding assume the problem is solved once the set of ohservations
have been suitably mapped into the desired lower chmension. Fur-
thermore, many algorithms ie.g,. Isomap, Locally Linear Einbed-
ding, Spectrul Embedding) rely ou determining the nearest neigh-
bors for observations, which induces a graph from the set of obser-
valions, However, this graph, though it may contin uselul infor-
mation about the undeilying topology of the dataset, is not often
represented in the visnalization. One contribution of PAP? is that it
goees beyond simply determining a goed placement for each vertex:
P2P* also determines how to appropriately fill in the space in be-
tween points hased on the topology of the underlyving ohservations.

Towards this end, this paper presents a general methodology for
data visualization that can be applied broadly to many of the dif-
ferent types of observations described above. Recently there has a
been siguificant improvernents io the wvadlability, quality, und ease
of use of open source tools for scientific computing and data anal-
ysis, especially for the Python scripting language. In this paper we
also highlight how several open source packages can be combined
1o perform neatly all of the “heavy liting” required to implement
this pipelite, Aside from making the proposed visnalization tech-
nique accessible to a wider audience, reliance on open source soft-
ware I this manner abstracts the visnalization pipeling in & way
that 15 easily extensible. It is straightforward to plog in a different
algorithin ai the user's discretion for any of (he main sieps in the
pipeline.

2 BACKGROUND & RELATED WORK

The problem of how to best display a set of (possibly high dimen-
sional) observatious in a low dimensiotd spuce is o fundutnental
10 understanding scientific datasets that the basic techniques have
been used for decudes. For ilds Lype of problemn we have a dalusel
X consisting of n p-dimensional observations, where x; « B2, One
such technique is Principal Components Analysis (PCA), where a
set of high dimensional points are retated in a manner that gives
the leading components the most amount of varance [9]. PCA
can he used as a data visualization and exploration 100l; when the
number of principal components is 2 or 3, the points can be ren-
dered on (he screen (0 reveal relutiouships within ibe dala, PCA
can also be nsed simply as a dimension reduction technique for
preprocessing before the data is tackled by other ulgorithis. Mul-
tidimensional scaling (MDS) addresses & problem similar o PCA,
bt assummes that only the distances between poinis are known |3].
In other words, the datasets P consists of # observations of n di-
mensions where d;; is the observed distance between observation
iand j, Such data conld aise from preference questionnaires. for
example. Essemtially, MDS algorithims attempt to minimize the dis-
crepancy between the distances separating (he erbedded points and
the distances given in the input.

Many other lechuiques exist that improve ou PCA or MDS in
some wiy, with one of the most popular techniques being Isormap
[17]. This algorithm constructs a graph connecting the closest ob-
servations to each other, and then the geocdesic distances beiween
these Teighboring observations is nsed to determine a suitable lower
dimensionyd emmbedding. Ottier ernbedding techuiques include Lo-
callv Linear Cmbedding [14], Laplacian Cigemmaps [2]. and Spec-
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Abstract

A continning hurdle in the cognitive modeling of human-
computer interaciion is the difficolty with allowing models
to interact with the same interfaces as the user. Multiple at-
tempis have been made to add this functionality (c.g.. Hope,
Scheelles, & Gray, 2014) in limited domains. This paper
presents a solutdon allewing models to imeract with web
browser-based software, while requiring little modification o
the tagk code. Simplified Interfacing for Modeling Cogniton
- JavaScript (SIMCog-JS) allews the modeler to specify how
elements in the interface are translated into ACT-R chonks,
allows kevheard and mouse interaction with JavaScript code,
and allows sending ACT-R commands from the external sofi-
ware (e.g., 1o add instructions). The henefits, drawhacks, and
future functionality of STMCog-18 are discussed.

Keywords: Cognitive Architectures; Task Interface; ACT-R;
WebSockets; ISON: HTMI ; JavaScript; D3

Introduction

A substantial challenge with modeling human cognition is the
presentation of task environments to the simulated human.
Software re-implementation provides little scientific reward,
vet modelers face this burden every time they utilize a new
or modified task. The situation is further complicated if a
modeler is studying human-computer interaction {HCI} with
complex software in which users are engaging in ongoing, dy-
namic, and interleaved or multi-tasking behaviors. Because
the focus of cognitive modeling in HCTis ofien either explain-
ing or predicting performance differences between alternative
interfaces, substantial research time is spent re-implementing
multiple. complex interfaces; this effort is turther multiplied
if multiple cognitive architectures are used.

Although re-implementation within a modeling architec-
ture framework can allow maximum control by the modeler,
it introduces additional challenges: (a) Re-implementation
increases the likelihood that the fidelity of the simulation is
degraded by an imperfect porting of the user interface or task
dynamics. (b) Tterative changes to the original softwareftask
require additional zfforts to integrate these changes into the
model’s task envirenment. (¢) Tusk-simulalion environmenls
for cognitive architectures are sometimes written in program-
ming languages not commorly used for building HCI inter-
faces (e.g., ACT-R uses Lisp; Anderson et al., 2004) and of-
ten provide limited facilities for building the task simulations.
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Thus, the process of re-implementation forces a trade-off be-
tween task fidelity and time savings. An alternative to re-
implementation is to allow a model to communicate directly
with a user inferface thut is external to the cognitive architec-
ture. Previous research has attempted to solve this challenge,
although in limited domains. Computer vision (C'V) has been
used 1o aulomalically extracl elevanl visual fzatures from an
cxisting computer interface {e.g., Halbriigge, 2013; St Amant,
Riedl, Ritter, & Reifers, 2005). While CV solutions remove
the burden of “translating”™ the interfuce 1o symbols under-
stood by the architecture, they also reduce the control the
modeler has on how the visual interfaces are specified. Ad-
ditional conlrol requires (he modeler o customize the CV al-
gorithms or specify screen element “templates” at the pixel
level. Other solutions provide the ability for models to act
within specialized environments, like games (e.g., Veksler,
2009 or robotics (¢.g., Kennedy, Buggajska, Adams, Schultz,
& Trafton, 2008). These solutions are incredibly useful but
are limited (o their specialized environments. Still other solu-
tions provide a more generzl framework for interfacing mod-
els with external software by using interprocess communi-
calion protocols svailable in many programming languages
(e.g., Biitmer, 2010; Hope et al., 2014). The solution pre-
sented herein falls into this final category.

We present a solution to the challenge of communica-
tion between external task environments and cognitive ar-
chitectures: Simplified Intertacing tor Modeling Cognition
- TavaSeript (SIMCog-JS). Our approach supports commu-
nication between Java ACT-R (Salvucci, 2013) and HTML-
/JavaScript-based soflware in 4 user-friendly manner. In the
remainder of this article, we specify some design require-
ments, describe the functionality provided by SIMCog-JS,
and provide an example of SIMCog-IS applied to a dynaniic,
multitasking experiment environmenit.

SIMCog-JS Design Requirements
SIMCog-IS is a lechmology thal allows cognilive modelers
to specify how visual information is extracted from external
software, passes that information to ACT-R, and passes key-
hoard and mouse events hack to the external software. The
primary motivation for SIMCog-IS is rooted in a desire to
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fid:"<unique name >, type:"<valid type >

The id vniguely idemtifies the object. If the interface el-
ement has an explicitly labeled id in the document-object
model (DOM; e.g.. <divid="top_mav":>), that string can be
used as the SIMCog-18 id. If an ohject does not have a
unique ID, the id can be specified with two attributes, name
and domLocation. The mune value is a string that must be
unique to the object. It is helpful to make the name mean-
ingful. A domLocation value is the node of the object located
within the DOM tree. This node can be found in multiple
ways. One way is Lo identify the relution 1o another named
object within the DOM tree. Ancther is to locate the object in
the DOM tree relative to the root (i.e., document). Syntax for
these methods are:

{id:{domLocuticn:document . getElementByld<
“<element_id >"). vextElewentSibling .
name:” < unique_name 7}, ...

{id:{domLocation:document.body.
lastElementChild ,
| .
Foooeod

name:” < Unique_name 7

The 1ype is a string that determines how the ob-
ject will be represented within ACT-R. A screen ob-
jeet must he of nine l(ypes:  “Line”, “Cross”
“Label”, "Oval”, »OvalOutline™, ” OvalOutlineHll ”, "Rectangle™,
"RectangleOutline ™, or " ReclangleOutlineFill *. The first three
types are “native” to Java ACT-R;? the remaining ftems are
custom task components added by the authors. The tvpe
of an object is represented in the visual chunk’s “isa” at-
tribute (e.g., " OvalOutlincFill * has an attribute of *isa oval”).
Additionally, if the shape is specified with two colors (e.g.,
" OvalQutlineFill ™ has a fill and outline celor), then SIMCog-
18 adds a horderColor chunk slol thut contuins the value of the
hordet’s color and the standard ACT-R color slot contains the
value of the fill color. The coordinatas, dimensions, and col-
ars of objects are determined differently for different ohject
types. If an object is declared with the wrong type. it is likely
that the object will be misrepresented in ACT-R.

The modeler may also specify when changes to interface
clements are sent to ACT-R. The default is to update when-
ever the element changes using DOM Mutation Observers.
This event-based functionality is most vseful when one or
more attributes of the interface element changes infrequently.
The modeler may also specify that updates occur at a config-
urable, regular interval fe.g., polling). This polling function-
glity is most useful when the attributes of objects arc rapidly
changing. Insuch cases, the polling method can substantially
decrease the number of messages to the server, decreasing
computational demands. Specifying pelling-based changes
is done by adding a change atiribute with the value “poll” to
the element declaralion. Finally, an objecl can be declured as
static. Static elenients are never updated. The medeler may
specify an object as static by adding a change attribute with the

one s

“Note that "Buron”s are not supported. As discussed later, any
type of object can be clickable.
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value ™ static ™ 1o the elemenl declaration. Syntux for change
declarations is:

{.... change:” evt”|" poll”|” static”}

In addition lo specifying when updales [or «n objecl are
sent. the modeler may specify which visual properties are up-
dated, By default, all properties are updated. Listing only
those properties (hat will chunge can improve soflware per-
formsnce. For example. a light may only change color but
not move, or tracking reticles may only change cocrdinates
butl nol colors. The lisl of’ properties [hat will be updaled
are appended to the value given to the change attribute. If no
such list is given, all properties are updated. Valid attributes
are "x", Uy", Theight”, Twidlh®, Ceolor”, CsecoudaryColor”, and
”stringVal 7. Only labels have ” stringVal » attributes. Syntax
of these expanded change declarations are:

{..., change:["<attribute_name =",
»additional_attribute_name >, ...1}

., chapge: [T poll™, "<attribute_nawe 7,
"additional _attribute _name >, ...]%}

—

It is also possible to add objects to the ACT-R task envi-
ronment that are not relevant to the model but are useful for
the modeler {i.e., for debugging the visual interface;. This is
done using “lask-irelevant” objects. Task-irrelevanl objects
never appear in the model’s visicon. For example, a task-
irrelevant object may be used as a background to make ob-
jects easier to see for the madeler. There are four possible
task-irrclevant objects: Cross, Label, Line, and Rectangle.
Task-irrelevant objects are not updated thronghout the task.
All ebjects default to being task-relevant. Te declare an ob-
jeet as task-irrelevant, the attribute taskRelevant is added to an
object declaration with a value of false. The syntax for this
option is:

"..., taskRelevant:true|false |
Exumple Specifications from mMATRB  This section pro-
vides cxamples of how interface clements in the mMATB
task, shown in Figure |, are specified. The examples start
with simple specifications and progress to the more complex.

Perhaps the simplest interface elements in mMATB are the
background color panels underlying all four quadrants. They
never change (i.e., are smutic ), are filled with « single color
(" steel blue™), and are rectangular. If one hypothesizes that
these background colors are ignored by the users, these el-
ements can be declared as task-irrelevant. Alternatively, the
cognitive model could sinmply ignore these elements, or the
modeler could choose to exclude these elements. Making
them task-irrelevant will improve softwire performance ever
so slightly. Including them in the interface specification will
make the interface in ACT-R more readable. Although the in-
lerface elemenl is simple, it is not uncommon for HTMIL ids
to be missing from background clements, which complicates
the id for these elements. In this example, the domLocation
value is used to determine the id based on the modeler’s
knowledge of the location of these elements in the DOM trec.
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‘type:" Rectangle™,
id:{pame:"svgd"”,
domLocation:d3.
selectAlL (" svg ™)[0T[0]. firstChild },
change:” static ™,
luskRelevant: fulse t

The Monitoring Task color indicator blocks (upper left
quadrant) provide a straightforward example for displaying
event-based task clements. The following example is the
specification of the green color indicator block; the specifi-
cation of the red block is similar. The id of this rectangular
element is known. mwouitor_bullon_0. The only property that
changes is the color and so the only value assigned to the
change attribute is color. The changes are mifrequent, nor-
mally changing only a few times per second, so the change
attribute is given the value of "evt®. Note that "evt” is the
defanlt and is not required in the declaration.

{1ype:” Rectangle™,

id:"monitor_button_ 07,

change:["evt”, “color”]}

Label interface clements are unique in that they con-
tain text that can be updated. The mMATB Communica-
tions Task’s channel vialues provide examples of changing li-
bels. As with the indicator blocks, the ids are known. like
“comur chaunel 1 _{requency” in the example below. However
the lex1 of ihe lubel changes. Tn the exumple below, the change
attribute is labeled as event-based (e.g., “evt”) because the
values rarely change, and only the text of the label is marked
tor change with ™ stingval ™
Ltype T Label ™,

id:”comm channsl 1 frequency”™,

change:["evt” "stringVal "]}

The most dynamic elemenls in the mMATE inlerluce ure
the colored circles in the Tracking Task. Each oval moves
continucusly along a path using the D3 animation library. The
constant motion produces a lot of events; this could generate
a lot of network traffic and decrcase software performance.
Therefore, these elements are specified with the ~poll ™ value
for the change attribule. The location (“x™ and “y™) and " color™
change, and so all three values are listed in the change at-
tribute, The tinal attribute of the example specification given
below is clickable ; (his allribule will be described in (he next
section.

{1ype:7" OvalOutlineFill ™,
id:"track_circle_07,

P

change: [" pell” "x" "y
clickAble: true ;-

,Peolor ],

Keypress and Mouse Events

To complete the interaction loop, actions taken by the model
are (tansmitted lo the lask environment. There are three types
of interaction currently supported by SIMCog-J5S: key press,
cursor move, and mouse click. The server sends all inter-
actions to the client; tha modeler has full control of how to
handle (or ignore) cvents.
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The simplest of the three inferactions is key press. Key
press interactions are handled automatically by the system.
This is done by mapping ACT-R keycodes to JavaScript key-
codes und dispatching « keydown event (o (he task. Currently
only kevdown events are supported; the modeler may modify
the client code to support keyup and keypress events.

When a click is performed, 4 message is sent Lo the client
containing the location of the mouse and the cvent type
{mouseClick). While mouse coordinates may be enough for
nany tusks, more mformation is provided, for example, (o
deal with the asynchronous nature of the system or facili-
tate a deeper analysis. An example from the mMATB task
is when the model clicks on circles in the wacking lask that
are moving quickly, the cirele could move a couple of pixels
out from under the cursor before the click event reaches the
client. To handle such circumslances, objecls can be declared
as clickable . Anytime a click is performed by the model, the
server determines if the click was performed within any of the
clickable objects. If it is detsrmined that one or more objects
were clicked, the message to the client will also include the
unique IDs of the items clicked, along with the location, type,
and 1D ot every clickable object. This intormaticn allows tor
cases where the unique identifier is needed to click an object
within the task and even more complex cases where specitic
informalion and computalion is desired.

To declare a visual chunk as clickable. add the clickable
attribute to an object’s specification and set it to true.

T..., clickable:lrue}

The client automatically handles clicks by dispatching a
TavaScript mouse click event. If a clickable object was
clicked, the client dispatches a click event for that element.
Otherwise, the client finds the element at the location of the
click and simulates the click there.

For mouse movements. JavaScripl does nol allow control
of the cursor in web browsers. Such control is 110t allowed by
code in web browsers for security and usability reasons. To
simulale & model™s mouse movements in the lask, SIMCog-
IS generates mouse movement messages for the client. This
approach offers both reliability and speed without introducing
external sottware systems.

When the model moves its simulated mouse, & mouseMove
message 18 sent to the client that contains the location of the
model’s simulated cursor. Wilh (his information, the wod-
eler can record the simulated mouse movements similarly to
how human mouse movement data are recorded. To do so,
the modeler will likely need (o modily the client code. Hor
cxample, in mMATB the cursor-recording code looks like:

WS, Onmessage function (evt)
//Called when server message received
var serverMessage JSON.parse(evt.data);

I
L

else if{serverMessage. Command ==
track chart.mousel.ocationd
{x:modellnteraction .mouseX,
yv:modellnteraction . mouseY }});

1
1]
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Sending ACT-R Commands

SIMCog-JS supports sencing model commands from the task
to (he model. Doing so is straight forward and lakes advuntage
of existing Tava ACT-R methods for exceuting ACT-R com-
mands. The modeler adds commands to a list in the client
code (st is sent o the server ut (hie start of execulion. For ex-
ample. to represent the Resource Management Task instruc-
tions to maintain the resource level within a target range, the
modeler may specily:

["(add—dm {resourceTask isa goal

minLevel 2000 maxLevel 3000;)”,
"({goal—focus resourceTask)}”]

Conclusion and Future Work

SIMCog-JS is a system that allows cognitive models to
interact with external software, minimizing the task re-
implementation burden on the modeler. The system currently
facilitates communication between Java ACT-R and HTM-
[/JavaSeript. In addition to describing the wehitecture of
SIMCog-IS, this paper reported on using SIMCog-JS to (2)
specify visual interface elements for use by ACT-R and how
those interface specifications can be customized, (b) integrate
ACT-R responses into JavaScript software, and (¢) execute
ACT-R commands from the task interface. The strengths
of SIMCog-JS are the easy specification of visual chjects
and interactions with minimal task-code modifications and
the seamless interaction between models and browser-based
tusks. The maodeler need only specify the idenlity and shape
for visual objects to reach ACT-R.

Development is ongoing to improve and extend the func-
ticnality of SIMCog-IS, A mid-term goal is to add syn-
chronous execution modes, where the task and model use
the same simulalion clock, reluxing design requirement 3
without negatively impacting real-time execution. Additional
planned features include audio event specification and sup-
port for multiple cognilive modeling formalisms, like EPTC
architecture (Kieras & Mever, 1997) and Python-based math-
ematical models.

By harnessing standard programming protocols and lan-
auages, the SIMCog approach can lighten the modeler’s bur-
den while broadening (he environmenis in which computa-
tional cognitive models operate. Because SIMCog-]S can
operatz in an environment with facilities for complex data vi-
swalization {e.g.. D3), we will be pushed to enhance ACT-
R’s functionality. In the future SIMCog-IS could be inte-
grated with an artificial vision system to, for example, au-
tomatically delermine object shape; this combined approach
could, in fact, bolster both candidate solutions to the task re-
implementation challenge.
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Abstract

Adaptive Control of Thought-Rational (ACT-R) and the
Linear Ballistic Accumulator (LBA) were compared i a
mode] mimicry simulation of the Psychomotor Vigilanee
Task (PVT). a simple, reaction time (R1) task requiring
sustained attention. The medels use different formalisms to
captura the full response profile of the PVT. The parameters
were viried systematically to illustrate the ranges of the
modals® predictions, to assess the models” estimation
properties, and to determine which parameters in the models
correspond with each other. Both models produced skewed
RT distnbutions lypieal of empincal dala, including false
starts and lapscs. The simulation study demenstrated that both
models and their parameters are recoverable, Laslly, 1solaled
parameters in the LBA model capturcd the effects of varying
parameters in the ACT-R model, but the reverse was not
always frue. These interesting correspondences across
different medeling formalisms suggest the possbility of
integrating ACT-R and the .BA in fulure work.

Keywords: ACT-R, LBA, PVT, rcaction time, fatigue, model
comparison

Introduction

The ability to detect a single stimulus is fundamental to
cognition. Although this skill is basic, the study and
modeling of stumulus detection 15 worthwhile for several
reasons. Shmulus detection has been exlensively exarmimed
in laboratory tasks involving vigilance and simple reaction
fime (RT, Tace, 1986). Additionally, this ability underlics
successful performance 1 applied contexts that require
sustained attention. such as driving. Finally, intuition
suggests that the cognitive processes involved in stimulus
datection should be involved 1n more-complex multi-
allernative choices as well

Despite the smplicity of detectien tasks, the RT
distributions they produce are complex and empirically rich
This is well-illustrated by the psychomotor vigilance task
(PVT, Dinges & Powell, 19853), a 10-minute detection task
in which stimuli are presented at random inter-trial intervals
ranging from 2 to 10 seconds. Participants are instinicted to
respond as quickly as possible once the stimulus appears
while avoiding premature responses. The PVT response
profile consists of three categories: false starts occur before
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or within 130 ms of stimulus presentation, alesr responses
occur between 150 and 500 ms of the stimulus onset, and
lapses occur 300 ms after of the stimulus onset. The RT
distribution on the PVT, which has a long right tail even
when participants are well rested, becomes mereasingly
skewed to the right with greater fatigue from sleep loss, as
reflected in increased lapses (Lim & Dinges, 2008)
Additionally, participants commit more [alse starts. These
features of the response profile reflect stable mdividual
differences, both at baseline and following sleep loss (Van
Dongen, Baynard, Maislin, & Dinges, 2004)

A complete model of the PVT should explain the full
response profile, vet most biomathematical accounts from
the sleep research literature only predict aggregate measures
of performance such as the proportion of lapses (for a
review, see Van Dongen, 2004). More recenl work lias
attempted to use statistical functions to characterize the full
RT distritartion (Tam & Dinges, 20081, but those efforts still
fail to explain why the particular distributions arise. A
promizing alternative is to use computational cognitive
models. which specify the cognitive processes underlying
task performance, to simulate behavior in the PVT (e.g.
Gunzelmann, Veksler, Walsh, & Gluck, 2015).

In this paper, we compared (wo PVYT models denived [Tom
very different formalisms. The first model 15 based on the
mtegrated-cognmtive  architecture  Adaptive  Control  of
Theugh-Rational (ACT-R). in which RTs are determined by
the durations of a sequence of discrete cognitive events. The
second model is based on the Linear Ballistic Accumulator
(LBA; Brown & Heathcote, 2008), an analytically tractable
mermber of the class of sequential samplmg models. ln the
LBA, RTs are determmed by the combined durations of a
decision process in  which evidence accumulates
comtinuously, and an overall non-decision time attributed to
pereeptual and motor processes.

The PVT is an 1deal test bed for comparing ACT-R and
the LBA because (1) the PVT is simple, yet (2) it provides
empirically rich data for inferring cognitive processes, and
(3) both ACT-R and the LBA can be applied to the PVT.
Rallwr than attempting o falsfy one account, we sought
compare and contrast these differing formalisms
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(1 Uy = Ug(U; - MMP;) + ¢
where U, is the utility of productien i in state 7, U5 is the
utility scalar, U; is the stored utility for production i, MAMP,
is the mismatch penalty for production i 1n state j, and & Is
logistically distributed noise. The resulting pavofl matrix 1
symmetric with 0 assigned to mismatches and 1 assigned to
matches. The mismatch penalty ensures that productions
whose conditions are not perfectly met will be selected with
low probability.

The production with highest utility is selected and enacted
if its utility exceeds the utility threshold, U,

(2) Production = max(Uii) if max(Uii) = Uy

It no production’s utility exceeds the utility threshold, a
microlapse occurs and 1o production is enacted. Following a
microlapse, the utilily scalar m Eq. 1 15 decremented by an
adjustable scalar, FPg., according to U, — U FPy. Ths
increases the likehhooxl of microlapses 1n subsequent
production cycles. Across such a series of cycles, the
probability of responding decreases progressively, causing
behavioral lapses. The final adjustable parameter, cycle
time, controls the duration of conflict resolution at the start
of each production cycle. In total, the ACT-R model
conlains four free parameters: L, Ur, #F4.., aud eyele tine.

Our model harnessed two sources of temporal variability.
Tha first related to the variable sequence of productions
selected in a trial, and the second related to the stochastic
duration of production and cycle times. Each trial’s RT,
then, was determined by the summed durations of the
productions and their assoclated cognitive and motor
processes. L Uy way, the ACT-R model can produce a [ull
distribution of RTs, rather than an approximation of an
aggregate mean RT (Walsh, et al |, 2014).

Simulation Method

We simulated an 1dealized selective influence experiment
(Donkin, et al. 2011) in which the parameters of each
model were systematically varied one at a tume while all
olhers were set to delault values. This approach allowed us
to examume (1) our ability to accurately recover parameters
of each model, (2] the extent to which the models mimicked
cach other and (3) how the parameters were correlated
between moedels, Parameter ranges were drawn from the
published model fits of PVT performance by 13 well-rested
mdividuals in the control condition of a sleep deprivation
experiment {Doran, Van Dongen, & Dinges, 2001; see also
Walsh et al., 2010, We sel lhe default value of ach
parameter to the meadian estimate from the dwidual mocdlel
fits, and the range of cach parameter to the complete range
of estimates from the individual fits (Table 1) We varied
parameters at ten equally spaced intervals over their ranges,
resulting in 40 ACT-R parameter sets (10 levels per
pavameter by 4 parameters) and 30 LBA parameter sats (10
levels per parameler by 5 parameters). We smmulaled 50,000
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PVT trials for each model and parameter set to minimize the
role of sampling error and buas 10 our analyses.

Table 1. Default parameters and ranges in the simulation.

LBA b Agy Ver g Vrsr
Delault 0.68 0.44 342 0.15 -2.34
Min 0.54 0.1 3 015 -2.95
Max 098 0.56 39 0.18 =201
ACT-R U Iy FPy. g,:;:s -y
Default 485 4.39 098 0.04 0.46
Min 4.m 4.07 0N 0.029 .38
Nax 56 5.02 0.99 0057 1.21

Each moedel was fit to the 90 sunulated datasets using
cquantile maximum likelihood estimation (Heathcote, Brown
& Mewhort, 2002). RTs that occurred prior to stimulus
onset or within 150 ms of stimulus onset were combined
into a false start bin (Lim & Dinges. 2008]. The remaining
partion of the distibution was further divided inte 20
quantile bins. Likelihood estimates were caleulated from the
observed and expected proportions of RTs wilhm each
quantile bin. A simplex algorithn embedded within a grid
search was used to find the model parameters that
maximized the likelihood of each simulated dataset. Large-
scale computing resources (Harris, 2008) were leveraged for
ACT-R, as it is computationally intensive.

Results

Model RT Distributions

Figure 2 shows four of the most distinetive RT distributions
produced by ACT-R and the LBA. The distributions, which
vary in terms of numbers of false starts and lapses as well as
median RTs (Table 2), are within the ranges of those
produced by well-rested and sleep deprived individuals (cf.
Walsh et al.. 2014). In the 90 simulated datasets, the models
produced sumilar proportions ol lalse starts and lapses and
similar mecian RTs, However, the LBA model consistently
vielded distributions with mare pronounced skew

Table 2. Proportions of false starts and lapses, and median
RTs from the simulated distributions in Fig. 2.

Meodel Curve False Lapses Median
Starts RT (ms)
ACT-R Blue 006 000 45
Red .008 005 272
Black 010 083 305
Green 101 202 3381
LBA Blue 006 .ooo 242
Red 008 010 271
Black 011 085 306
Green 106 210 381
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Table 5. Correlations between ACT-R (data generating) and
LBA (best fitting) parameter values. *p <05

LBA
ACT-R Frer Vo fr, Response
Caution
FP . -0.22 0186 0.08 0.30
Cycle Time | 018 -0.01 -0.08 0.89*
- Ly 0.07 0.96% -0A41* 0.08

paramteters 1 e ACT-R model were selectively mfluenced
by changes to Iy Vg and 1, but all parameters were
affected by changes to response caution. Next, we examined
how the LBA responded to manipulations of ACT-R
parameters (Table 5) Changes to cycle time were captured
by response caution. and changes to U - Uz were captured
by Vi No parameter in the LBA was selectively influenced
by changes w0 FP. In sum, there was a direct mapping
belween mdividual ACT-R parameter manipulations and
LBA  parameters, but not between individual LBA
parameter manipulations and ACT-R parameters

Discussion

The detection of a single stimulus is amoeng the most-widely
studicd topics in cognitive science Yet, despite the
simplicity of one-choice RT tasks, the RT distributions they
produce are complex and difficult to account for in detail.
Here. we compared two computational cognitive models of
the PV'T. One model was based on ACT-R and consisls of a
sequenice ol discrele cognilive evenls while the other was
based on the LBA, which involves contimious evidence
accumulatien. The results of our simulations support three
findings. First, both models produced the qualitative shapes
of RT distributions found in the PVT, including the long
right tail of RT distribution, and occasional false starts and
lapses (Fig. 2). Second, most model parameters were
recoverdable and (he PV was capable ol distinguishmg
between the models. Third, isolated parameters in the LBA
maodel caphired the etfeets of varying ACT-R parameters,
but the reverse was not always truc. The correspondence
between ACT-R parameters and LBA parameters suggests
similarity between these differing modeling formalisms.

Model Comparison

The correspondence between parameters in the LBA and
ACT-R models was complex. In some cascs, parameters in
one model were affected by parametric variations in the
other m ntwitive ways. For example, drift rate (Fy;) in the
LBA captured changes in the difference between the utility
scalar and threshold (&7; - Ur) in ACT-R. This makes sense
because both fundamentally control the signal-to-noise ratio
i e decision process.

In  other cases, unexpected model parameters
corresponded to one ancther. For example, changes in
response caution in the LBA were captured by cycle fime in
ACT-R and vice versa, Response caution is thought to be
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sensitive to instructions designed to prioritize speed or
accuwracy, whereas cyele Hme 1s conceptualized as a stable
property of he coguitive urchitecture that only vares amoeng
individuals. ACT-R posits that production selection 18
instantiated in the basal ganglia, which reectves mput from
multiple  excitatory inhibitory  pathways. It 1
concelvable that the duration of production selection.
represented by cicle time, varies with dynamic activity from
these pathways, In other words, the relationship between
response caution and cvele fime may be real, despile lhe
current standard of fixmg eyele time within ACT-R models
of individuals.

In a third set of cases, we found little correspondence
between model parameters. For example, ACT-R failed to
capture manipulations of non-decision time i the LBA.
This relationship was relatively symmetwical in that non-
decision time showed little or no systematic relationship to
the manipulation of any ACT-R paramelers, Such a lack ol
correspondence suggesls (hat an experimental mampulation
of non-decision time could potentially dizcriminate between
ACT-R and the L.BA. Morcover, this finding indicates that
conclusions will depend critically upon which medel 1s used
to evaluate data.

and is

Effects of Fatigue on Psychomaotor Vigilance

We demonstrated that the ACT-R and LBA models produce
a range of responze profiles that are similar to each other,
and similar to those observed in well-rested individuals. The
models rarely responded before 150 ms of stimulus
presentation (false starts). and they rarely responded more
than 500 ms after the stimulus appeared (lapses ). False starts
and lapses, though present in baseline RT distributions, are
greally exacerbated by [atigue from sleep loss. As shown by
Walsh et al. (2014), ACT-R can be integrated with a
biomathematical model of fatigue to predict the effects of
time awake and time of day on PVT performance. The LBA
maodel has not been expanded to account for the effects of
fatigue on PVT performance, yet it should be conceptually
straightforward to do so.

Evaluatng the models under conditions of fatugue might
also enhance model discriminability. More confidence can
be placed 1w a model that caplures normal as well as
mmpared cognitive functioning. Certain parameters that are
essential to capturing the effects of fatigue minimally atfect
alert performance on the PVT (FT?,,, and Uy in ACT-R, and
Fryin the LBA). In this sense, sleep deprivation protecols
provide a unique opportunity to distinguish among maodels
of the PVT (Walsh et al,, 2014) and could be leveraged as a
general slrategy for model comparison.

Towards an Integration of ACT-R and the LBA

Sequential sampling models and ACT-R explain cognition
using different modeling formalisms. Sequential sampling
models provide detailed eccounts of empirical RT
distributions. Tlis emphasis comes al the cost of lumiled
generdlizability beyond well-constramed  decision-making
tasks utilizing fixed trial strucnires. Cognitive architectures,
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by contrast, focus on the unification and generalization
necessary to model complex tasks. Because of this focus,
cogmitive archileclures neglect certain details of low-level
decision processes

Ffforts to capitalize on the complimentary strengths of
sequential sampling models and cognitive architcetures have
been made recently. Van Maanen, van Rin. and Taatgen
(20127 combined the DDM and ACT-R to form RACL/A,
which accounts for the dynamics of declarative memory in a
picture-word interference task. A DDM  with muluple
accumulators governs how the aclivation values of
informaticn in declarative memory change over time and
determine retrieval latencies. ACT-R, in turn, provides the
control structure necessary for coordinating the multitude of
decision and non-decision processes evoked by the task.

Within the context of the PVT, sequential sampling
models could be used as a mechanism for production
selection. Presently, the duraton of preduction selection
ACT-R 15 trealed as a urnlorm random variable with a mean
of about 40 ms (Table 1) Each production could instead be
represented as an accumulator with a drift rafe deterrmined
by the match between the stats of the world and the
production’s conditions. Integrating these approaches would
provide a theory of production selection (implemented as a
sequential sampling model) along with a theory of task
conlrol (implemented as production rules). The LBA would
be a natural choice for the sequential sampling medel for
three reasons: (1) it 1s applicable to selection among wo or
mere alternatives, (2) it i3 more parsimonious than other
seguential sampling models, and (3) parameter estimation is
efficient and mathematically tractable.

Incorporating a sequential sampling model into a
cognitive architecture would provide a more detailed,
formal account of the time course of production selection.
Sucl an accounl would provide a rationale for changes m
the stochastic duration of cycle time. Although such an
acoount may be unnecessary for modeling the PVT,
incorperating both representational levels would be useful
for capturing complets performance dynamics in more
complex tasks. Factors in multi-alternative choice tasks such
as decision conflict and value influence decision times
{Ralclilf & Frank, 2012). Likewse, factors m sigle-
alternative choice tasks such as stimulus contrast and
luminosity influencs decision times. Presently, these effects
are difficult to explain in ACT-R. Implementing production
selection as a sequential sampling process could overcome
these challenges
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Abstract

The capacity coefficient is a well-established, model-based
measure that compares performiance with muoltiple sources of
imformation together to performance on each of those informa-
ticn sources in isolation, The measnre is a function across time
and can potentially carry a large amount of information about &
participant. In many applications. this information has been ig-
nored, either by using qualitative assessment of the function or
bv vsing & single sunumary statistic. Recent work has demon-
strated the efficacy of dimensional reduction, particularly funce-
ticmal principal components analysis, for extracting important
imformation abont the capacity function. We extend this work
by applving additional techniques from statistical learning, in-
cluding K-means and hierarchical clostering to examine indi-
vidual differences in configural learning.

Keywords: Couligural Lewning; Individual Differences; Ca-
pacity Coefficient: Huinan Inforuation Processiug Modeling

Introduction

The basic goal of the capacity coefficient is to compare
response times (RTs) with multiple sources of informa-
tion to RTs with a single isolated source of information
(Townsend & Nozawa, 1995; Townsend & Wenger, 2004;
Houpt & Townsend, 2012: Houpl, Bluha, Mclntire, Havig,
& Townsend, 2013). There are a number of factors that can
change performance with increassd workload, including fac-
tors such as correlated processing of the sources informartion,
processing strategy, and task demands. An additional factor,
which is of less interest to the study of cognition, is the ef-
leel of statistical Tacilitalion/inhibilion. “T'his is the basic phe-
nomerion that the fastest (slowest) sample of multiple random
processes tends to be faster {slower) than a sample from any
of the individual random processes. The capucity coefficient
controls for speed up or slow down from statistical facilita-
tion or inhibition by measuring performance relative to the
predicted performance of an unlimited capacity, independent
parallel (UCIP) model.

More formally, if the time to process A, 74, has the cumu-
lative distribulion £3 () = (13 < ) and likewise [or B, wnd
A and B are independent, then the probability that neither has
finished is:

1 Faplt) =Py > 1 and T > 1)

—P(Ly>nP(Tp =) — (1-FaO)(1-Fe(r)) (L)

The cupucity coeflicient is a ratio meuasure compuring the
observed RTs with multiple sources to the predicted perfor-
mance of the UCIP system estimated from the observed re-
sponse with only a single source (i.e., Heuation 1). This com-
parison is nsnally in the form of a ratio of the cumulative
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hazard functions, defined by H(f) — —log | — F(r)].

H
Cul) = o2l 2

(s} +Hp(r)

If A and B must be exhaustively processed (i.e., both pro-
cesses are required to linish) we huve u dilferent baseline pre-
diction from the UCIP process.

Fap(t) =P(Ty <1 mnd Tz < 1)

= P(Ly < 1)P(lp < 1) = Fa()Fp(¥) (3
Using the cumulative reverse hazard function, K{r) =
log|F (1) , we can state the capacity coefficient for exhavstive
tasks in a form similar to Equation 2.

_ Ka(t) | Kair)
Kaplt)

Another casc of interest is when the target information i3
presented either alone or with either distracting or irrelevant
intormation. In this case, the UCIP prediction is that the RT
distribution will be the same regardless of whether or not
there are additional, non-target sources of information pre-
senled.

Cama(r) 4

Fax (1) = P(Ty 1) = Fa(r) 3]

For these single-largel, self-terminaling (8TS1) cases, the ca-

pacity coefficient is defined in terms of the cumulative reverse

hazard function.

_ K, A (I )
Kax (1)

In carly capacity coefficient applications, the analysis was
limited to plotting the function and visually assessing the
function in comparison ro the haseline of 1. More recently,
Houpt and Townsend (2012} developed summary test statis-
tics for comparing performance to a null hypothesis of TCIP
processing. While (his stulislic Is certainly un Inprovement
over purely visual assessment. it loses much of the informa-
tion about the shapes of the functions. Even among partici-
pants who lall inle the “signiticantly ubove buseline™ calegory
based on the summary test statistic there can & wide variety
of functional shapes.

Burns, Houpl, Townsend. und Endres (2013) demonstraled
the vse of functional principal components analysis (fPCA:
Ramsay & Silverman, 2005) for analyzing differences in the
forms of the capacity functions. fPCA is similar to standard
principal components analysis (PCA) in that it is a rotation of

Csts[ (f ) ‘\’6)‘
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the basis spuce used to deseribe the chserved data. The difTer-
ence is that in PCA the bases arc vectors whereas in {PCA the
bases are functions. More succinctly, in PCA, the data are de-
seribed as a linear combinalion of orthogonal veclors which
are ordered by the amount of variance in the data along that
vector. In fPCA, the data are described as a linear combina-
tion of orthogonal funclions ([ fif; = () which wre ordered
by the amount of variance in the data along that function (i.c.,
fi maximizes ):‘l\,’:l (f j}x,\)z where x; are the observed func-
tions, subject to the constraint thal [ fif; = 0 for j < ).

fPCA and PCA are often used to describe a dataset with
4 dimensionul subspace thun the original duta by only using
the first » bases (effectively projecting the data onto a lower
dimensional subspace). Each individual datum can then be
described by its Tactor scores on those n bases. For exani-
ple, it x; = a fi +azf:... @pfm where the f; arc the basis
functions from fPCA, then we can use a lower dimensional
representation of x; given by ¥, = a /1 + a2 /2. {PCA reduc-
tion can provide vs with & tractable vector space together with
representative functions to describe capacity coefficient data.
In particulur, similarity in the vector [PCA score space cap-
tures similarity in capacity function shapes, thereby providing
a way to quantify properties of the full functions,

Clustering

Our present effort explores the use of two popular clustering
melheds, £-means clustering and hierarchical clustering ap-
plied to the fPCA-reduced capacity coefficients with a goal
of systematically and quantifiably capturing patterns of simi-
larity and differences in capacity coefficients only previously
described in qualitative ways. K-means clustering reters to a
technique in which a set of points (in any finite dimensional
vector space) are modeled as belonging to one of K ditterent
clusters. The free parameters of the model are the locations
of the center of each of the X clusters, chosen to minimize the
Euclidean distunce between each datum and its neares! clus-
ter center. The number of clusters to use. &, is experimenter-
specified, either using a scree plot or comparing the ratio of
within cluster variation to between cluster variation across
different values of K.

Hierarchical clustering is an alternative to the X-means ap-
proach which is based on building successively more inclu-
sive grouping of data (agglomerative) or successively divid-
ing the data into more exclusive groupings (divisive). We use
4 basic agglomerutive procedure which first clusters the clos-
est nodes. The next cluster is formed by either grouping a
different pair of nodes which have the next smallest distance
hetween them or by clustering a datum with the previously
formed cluster if the distance between the datum and the clus-
ter is less then the distance between any pair of data. This
procedure iterates until @ single cluster torms.

Configural Learning Data

We analyzed the data from a configural leawning stwldy
by Blaha {2010) in which workload capacity qualitatively
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change:l over the course of iruining. Configural learning 1s
the process by which individual object features arc “chunked
together™ or unified into a single perceptual unit. Configural
leaming through unilization changes the perceplual represen-
tation of the objects. and Blaha and collcagues demonstrated
that this not only changes the information processing mecha-
nisims supporling ohject classilication (Blaha, 2010) bul alse
changes the supperting scalp-level neural responscs (Blaha,
Busey, & Townsend, 2009).

The experiment entailed two categorization tasks based on
Goldstone (2000}, A conjunctive categorization task was de-
signed to require exhaustive processing of the object belong-
ing to category 1 by systematic variation of the category 2 ob-
ject features. Mandatory exhaustive processing of this object
encouraged participants to chunk the features into a single ob-
jecl; thus, we expecled (and previously observed) unilization
of this object. Unitization results in a reduction of percep-
tual workload and an increase in processing efficiency over
the course of learning, captured by capacity coefticients that
shifted from limited to super capacity levels over training.

A single-featore categerization task served as a baseline
estimate for learning a single feature within objects similar
to the conjunctive task. Fach category in this task only con-
tained a single object, with one feature differing between the
two objects. Thus, RTs in this task captured the speed of re-
sponding s participants learned to distinguish individual vi-
sual features. Single-feature task RT distributions were used
to tormulate the UCIP estimates for the capacity coefficients.

A tolal of tourleen participanls completed 10-14 experi-
mental sessions, including 3-7 training sessions of both the
conjunctive and single-target categorization tasks. Each one-
hour session consisted of 1200 trials. T oall, the statistical
lcarning herein utilized 12,000- 16,800 trials for cach of the
14 participants isee Blaha, 2010, for full study details).

For every day of training, fowr capacity coefticients were
estimated for each participant. First, based on the mandatory
exhaustive stopping rule. the unitized object was examined
with Cana(). The cowplementury responses (i.e., calegory
2, non-comjunctive objects) required the identification of fea-
fures unique to categary 2, engaging an STST response rule.
Thus, learning in category 2 was analyzed with Cy,(2). For
both Cpg(r) and Cys (), absolute and relative capacity coef-
ficients were estimated. Absolute learning measured changes
in the Cyg(r) with the UCIP estimate derived from the first
training day, to give an overall estimate of capacity improve-
ment from the start of the learning process. Relative learn-
ing varied the UCIP estimaslz, to accounl for the single-turgel
discrimination learning occurring in picallel with configural
learning; relative C(r) values used numerators and denomina-
tors from corresponding training days.

Figure 1 illusirates the AND capacily duta for wll parlici-
pants. Day 1 of training is shown in the thinnest line, and
the last day of training is the thickest in each plot. All par-
ticipants exhibited (Cyg(r) improvements over training, but
as Figure | highlights. there was a varicty of individual dif-
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Discussion

In this paper we have demonstrated the use of clustering tech-
niques (o explore individual ditferences in configural Tearn-
ing. The capacity cocfficient gives a model-bascd measure of
how people are using the information sources together with-
oul making specitic assumptions about the RT distributions.
Although the raw functions may be unwicldy for exploring
sub-groups of participants, fPCA can be used to capture the
imporlant varialion across capacily [unclions. We (hen used
standard clustering techniques to examine different perfor-
mance patterns. The cluster memberships attained with these
methods cun either be used for additional exploratory unaly-
sis or for further comparisons with other types of data (e.g.,
clinical diagnosis or working memory capacity). Importantly,
clustering and other statistical learning approaches can pro-
vide principled methods for finding generalizable patterns or
trends in individual data without losing the characteristics in
the individuul participant data, which can be particularly chal-
lenging for functional or time series data.

In previous applications of the capacity cocfficient. analy-
sis had been confined to either qualitative, verbal descriptions
ol dilterent palterns across capacity functions (s.g., Group A
tends to have higher capacity than Group B...) or analysis
of the capacity information aggregated across time using the
statistic lrom Houpt und Townsend (2012]. The approach pre-
sented in this paper allowed us to objectively identify the dif-
ferent patterns of configural learning across participants using
the full functional information from the capacity coefficient.
From this we are able to conclude that configural leaming re-
quires at least five unique C(r) function shapes to describe
all the observed stages of learning captured in C'(¢) tunctions.
Each participant fell into one of three learning patterns, iden-
tified by the hierarchical clustering., So while all participants
unitized the objects in the task and showed overall increases
in RT and improvements in efficiency. there were three differ-
ent trajectories through capacity coefficient functional space
to get to that same trained end state. But this analysis also
revealed that multiple ways of measuring capacity (absolute
and relative’) were needed to identify these learning patterns.

An alternative approach to extracting summary statistics
from individual participants’ RTs would be to fit a model and
then compare model parameters (cf. Ridels, Donkin, Brown,
& Heatheote, 2010). The downside to the model fitting ap-
proach is that it relies on a number of assumptions about how
the RTs are generated that are ancillary fo the analysis of the
effect of workload [and hence the degree of configural learn-
ing). In our cwrrent approach, as with most approaches, ancil-
lary assumptions are necessary (2.g., Evclidean distances for
the clustering metricsj, however these measurement assump-
tions are far less constraining with respect to the potential
underlying processes thun direct assuniptions about the RT
distributions. Clustering and other statistical lcarning meth-
ods applied to the full functional C{r) data enables princi-
pled, quantified individual differences analysis with minimal
gssumptions about the best parametric model for capturing
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List of Acronyms

ACT-R Adaptive Control of Thought - Rational

DFP Double Factorial Paradigm

LBA Linear Ballistic Accumulator

mMATB Modified Multi-Attribute Task Battery

P2p? Points to Pixels Pipeline

pdf Portable Document Format

sft R for statistical computing package implementing systems factorial technology
SFT Systems Factorial Technology

SIMCog-JS Simplified Interfacing for Modeling Cognition - JavaScript
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